Re: calculate Recurrence Equations
- To: mathgroup at smc.vnet.net
- Subject: [mg68810] Re: calculate Recurrence Equations
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Sat, 19 Aug 2006 00:41:19 -0400 (EDT)
- References: <ec3peq$287$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Bob Hanlon wrote: >Add memory to the definition > >Clear[anteil1]; >anteil1[0]=1; >anteil1[n_Integer?Positive]:= > anteil1[n]= > anteil1[n-1]+(anteil1[n-1]*5-1)/100; >anteil1[n_Integer?Negative]:= > anteil1[n]=(1/105)*(100*anteil1[n+1]+1); > >anteil1[30]//Timing//N > >{0.002837 Second,3.65755} > >Clear[anteil2]; > >anteil2[n_]=anteil2[n]/.RSolve[{ > anteil2[n]==anteil2[n-1]+(anteil2[n-1]*5-1)/100, > anteil2[0]==1},anteil2[n],n][[1]] > >(1/5)*(1 + 4^(1 - n)*(21/5)^n) > >anteil2[30]//Timing//N > >{0.000229 Second,3.65755} > >Plot[anteil2[n],{n,-10,10}, > PlotStyle->Blue,ImageSize\[Rule]432, > Epilog->{Red, AbsolutePointSize[4], > Point/@Table[{n,anteil1[n]},{n,-10,20}]}]; > > >Bob Hanlon > > > > Very good! It seems to have a very low ratio (1.05 about) even if it is a rational sequence. You can convert it into an Integer sequence with the right factor. Try: Table[anteil1[n]*20^(2 + n), {n, 0, 30}] b=Table[N[anteil1[n + 1]/anteil1[n]], {n, 0, 100}] ListPlot[b]