Re: Problems solving using Solve
- To: mathgroup at smc.vnet.net
- Subject: [mg68934] Re: Problems solving using Solve
- From: "akil" <akomur at wanadoo.nl>
- Date: Fri, 25 Aug 2006 05:34:46 -0400 (EDT)
- References: <ec65bn$1f8$1@smc.vnet.net> <ecboe4$r87$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
I do ab[input_,rcAB_,ax_,ay_] := rcAB*input + ay - rcAB*ax; cd[input_,rcCD_,cx_,cy_] := rcCD*input + cy - rcCD*cx; Cone[beta_, v_,rcAB_,rcCD_,ax_,ay_,cx_,cy_,centerOfMassx_,centerOfMassy_] := Module[ {betaUsed, vtemp, fx, fy, ex, ey, waarde,criticalRC,criticalHeight,xVerplaatsing,ePx2Py2}, betaUsed = beta ; vtemp = v; fline[x_] := Tan[betaUsed]x - Tan[betaUsed]vtemp; fx = x /. Solve[fline[x] == cd[x,rcCD,cx,cy], x][[1]]; fy = cd[fx,rcCD,cx,cy]; criticalRC = (centerOfMassy - fy)/(centerOfMassx - fx); criticalHeight = -criticalRC*fx + fy; ex = (-ay + rcAB*ax + criticalHeight)/(rcAB + (-criticalRC)); ey = ab[ex,rcAB,ax,ay]; xVerplaatsing = ex - vtemp; ePx2Py2 = Sqrt[xVerplaatsing^2 + ey^2]; waarde = xVerplaatsing/ePx2Py2; ArcCos[-waarde] ]; afg[beta_,v_,rcAB_,rcCD_,ax_,ay_,cx_,cy_,centerOfMassx_,centerOfMassy_]:= Numerator[Together[D[Cone[beta,v,rcAB,rcCD,ax,ay,cx,cy,centerOfMassx,centerOfMassy],v]]]; TopCurve[b_,rcAB_,rcCD_,ax_,ay_,cx_,cy_,centerOfMassx_,centerOfMassy_]:=Module[ {afgeleiden,solutions,curve}, afgeleiden=afg[beta,v,rcAB,rcCD,ax,ay,cx,cy,centerOfMassx,centerOfMassy]; solutions = Solve[afgeleiden == 0, v]; curve = solutions[[2]]; Return[ v /. curve /. beta -> b] ]; now, which seems to work. Tested all solutions, because Solve[afgeleiden == 0, v]; gets up to 9 solutions in most cases. I used to take the second, and the second still seems to be the real max/min curve. Now I can continue with the next step, looking for intersections with anothe complex functions as TopCurve. Thanks guys.