nullspaces

• To: mathgroup at smc.vnet.net
• Subject: [mg68948] nullspaces
• From: hespeler <hespeler at gmx.de>
• Date: Fri, 25 Aug 2006 05:34:58 -0400 (EDT)
• Sender: owner-wri-mathgroup at wolfram.com

```Hello

I have a general problem with the computation of nullspaces for large dense matrices, e.g. dim(2,108), explicit example is added at the end of the mail. Using the internal command B=NullSpace[A] (A is an inexact, potentially complex matrix) and trying to reconfirm the result by

Chop[A.ConjugateTranspose[NullSpace[B]]]==N[ZeroMatrix[Dimensions[A][[1]],Dimensions[B][[1]]]]

the expression is evaluated as False. Looking closer at the problem reveals that the Chop[] command needs to be changed to Chop[ ,10^3] in order to get the result True. But this is an inacceptable precision error.

I have already written and tried a package which computes the nullspace by using the corresponding last columns of the singular value decomposition of A, but the results remain inaccurate, even if the numerical error changes slightly.

Does anyone have any hints for me?

Thanks

In[162]:=
A=Normal[transversante].ConjugateTranspose[hhante].qqi

Out[162]=
\!\({{\(\(0.042170814506866605`\)\(\[InvisibleSpace]\)\) - \
0.04365904565215812`\ \[ImaginaryI], \(\(0.`\)\(\[InvisibleSpace]\)\) + 0.`\ \
\[ImaginaryI], \(\(0.`\)\(\[InvisibleSpace]\)\) + 0.`\ \[ImaginaryI], \(\(0.`\
\)\(\[InvisibleSpace]\)\) + 0.`\ \[ImaginaryI], \(-0.0591612565906766`\) + \
0.06882821121109309`\ \[ImaginaryI], \(-0.27555289099985636`\) + \
0.28258955338611463`\ \[ImaginaryI], \(-0.09128328257449674`\) +
0.3718420745573258`\ \[ImaginaryI], \(-0.0035553460808508287`\) - \
0.055301986880073956`\ \[ImaginaryI], \(-0.06573662630437305`\) + \
0.0894854829278759`\ \[ImaginaryI], \(-0.16328117932159905`\) + \
0.11606132281812043`\ \[ImaginaryI], \(-0.05402087077457898`\) + \
0.040676448868849226`\ \[ImaginaryI], \(\(0.05368764383480679`\)\(\
\[InvisibleSpace]\)\) + 0.039915838820449155`\ \[ImaginaryI], \
\(\(0.02811577347720575`\)\(\[InvisibleSpace]\)\) + 0.10475006594804565`\ \
\[ImaginaryI], \(-0.5013384436514525`\) + 0.4030377547039782`\ \[ImaginaryI], \
\(\(0.001084842045018737`\)\(\[InvisibleSpace]\)\) + 0.0006867293358902532`\ \
\[ImaginaryI], \(\(0.0012338505670459298`\)\(\[InvisibleSpace]\)\) - \
0.0013788830593460823`\ \[ImaginaryI], \(-0.3888972079764323`\) + \
0.06257656392884961`\ \[ImaginaryI], \(\(0.6455264439495096`\)\(\
\[InvisibleSpace]\)\) - 0.39070609874323303`\ \[ImaginaryI], \
\(-0.009956419021652337`\) + 0.07680232594653319`\ \[ImaginaryI], \
\(\(0.07403873103809398`\)\(\[InvisibleSpace]\)\) + 0.10353474974917137`\ \
\[ImaginaryI], \(\(0.2540297665060402`\)\(\[InvisibleSpace]\)\) - \
0.09299126358636846`\ \[ImaginaryI], \(-0.13600563812491634`\) -
0.1391555167383493`\ \[ImaginaryI], \(-0.22836313462271599`\) + \
0.006716888619023218`\ \[ImaginaryI], \(-0.10740264272539245`\) + \
0.30541481064959375`\ \[ImaginaryI], \(\(0.1722117668349311`\)\(\
\[InvisibleSpace]\)\) + 0.2281910927730673`\ \[ImaginaryI], \
\(\(0.06634149206211888`\)\(\[InvisibleSpace]\)\) - 0.5971830455135179`\ \
\[ImaginaryI], \(\(0.5603350282784302`\)\(\[InvisibleSpace]\)\) - \
0.13490304189016808`\ \[ImaginaryI], \(-0.14274944473851764`\) - \
0.45830616093726484`\ \[ImaginaryI], \(\(0.0473707203360316`\)\(\
\[InvisibleSpace]\)\) + 0.2721334324773212`\ \[ImaginaryI], \
\(\(0.1258304421906695`\)\(\[InvisibleSpace]\)\) + 0.23987678549636876`\ \
\[ImaginaryI], \(-0.17327475985780155`\) - 0.057520090698474795`\ \
\[ImaginaryI], \(-0.0749412513990994`\) - 0.015252046374478974`\ \
\[ImaginaryI], \(-0.04748578742535436`\) - 0.0191817677856459`\ \
\[ImaginaryI], \(-0.1509574992528783`\) + 0.048284757284588815`\ \
\[ImaginaryI], \(-0.036597843463149045`\) + 0.026757411241338094`\ \
\[ImaginaryI], \(\(0.2439425964587623`\)\(\[InvisibleSpace]\)\) + \
0.03211693813334869`\ \[ImaginaryI], \(-0.229301513419864`\) + \
0.7259210769071783`\ \[ImaginaryI], \(-0.45698337944432915`\) + \
0.08831136508505165`\ \[ImaginaryI], \(\(1.9292529839837473`\)\(\
\[InvisibleSpace]\)\) + 0.7207881589446596`\ \[ImaginaryI], \
\(-2.2202853653228405`\) + 0.8354504671016708`\ \[ImaginaryI], \
\(\(3.7170982652966944`\)\(\[InvisibleSpace]\)\) -
6.588517156614078`\ \[ImaginaryI], \(\(1.9500026249471027`\)\(\
\[InvisibleSpace]\)\) - 4.0937744857380665`\ \[ImaginaryI], \
\(\(0.14162265936037005`\)\(\[InvisibleSpace]\)\) - 0.25506172911274544`\ \
\[ImaginaryI], \(\(4.287290452868696`\)\(\[InvisibleSpace]\)\) - \
1.0881343602765248`\ \[ImaginaryI], \(-4.357680459399585`\) - \
10.417084831055199`\ \[ImaginaryI], \(\(3.603000589011051`\)\(\
\[InvisibleSpace]\)\) - 1.8633505928348253`\ \[ImaginaryI], \
\(-21.941288184133004`\) + 8.868620561477906`\ \[ImaginaryI], \
\(\(12.484332520953163`\)\(\[InvisibleSpace]\)\) - 5.712407499945963`\ \
\[ImaginaryI], \(\(12.813725706376346`\)\(\[InvisibleSpace]\)\) - \
9.304224267409285`\ \[ImaginaryI], \(\(6.0142274899099855`\)\(\
\[InvisibleSpace]\)\) - 5.628596721018549`\ \[ImaginaryI], \
\(-3.0021070886513916`\) - 3.2027264911421764`\ \[ImaginaryI], \
\(-0.35380661217267984`\) - 2.5948538167468462`\ \[ImaginaryI], \
\(\(1.4153141327618413`\)\(\[InvisibleSpace]\)\) + 0.09355151749685993`\ \
\[ImaginaryI], \(\(0.3805532263844856`\)\(\[InvisibleSpace]\)\) + \
0.5657467971685045`\ \[ImaginaryI], \(-0.16780456582901399`\) + \
0.12816073526607571`\ \[ImaginaryI], \(\(0.34761459205394335`\)\(\
\[InvisibleSpace]\)\) + 0.8544997267414718`\ \[ImaginaryI], \
\(-0.7979120916750153`\) +
0.6300415573105395`\ \[ImaginaryI], \(\(1.023419026743691`\)\(\
\[InvisibleSpace]\)\) - 0.5784598779884246`\ \[ImaginaryI], \
\(\(0.12396495744825516`\)\(\[InvisibleSpace]\)\) - 0.35483011060946495`\ \
\[ImaginaryI], \(\(0.8290071671078865`\)\(\[InvisibleSpace]\)\) + \
0.21077324360848898`\ \[ImaginaryI], \(-1.1556708711191133`\) - \
0.887081351732459`\ \[ImaginaryI], \(\(0.16787493378512255`\)\(\
\[InvisibleSpace]\)\) + 0.036915462693343566`\ \[ImaginaryI], \
\(-0.01826567375707733`\) - 0.34606532190734873`\ \[ImaginaryI], \
\(-0.0026438282762861107`\) + 0.6231246080815099`\ \[ImaginaryI], \
\(\(0.6000862379247004`\)\(\[InvisibleSpace]\)\) - 0.06878465956263766`\ \
\[ImaginaryI], \(\(0.004133800801018672`\)\(\[InvisibleSpace]\)\) - \
0.3305288926335793`\ \[ImaginaryI], \(\(0.1593206642940382`\)\(\
\[InvisibleSpace]\)\) - 0.882098198162604`\ \[ImaginaryI], \
\(-0.14844620818111479`\) - 0.13220225377748065`\ \[ImaginaryI], \
\(-1.3457881202202548`\) - 0.3682343003723151`\ \[ImaginaryI], \
\(\(0.24229963672427493`\)\(\[InvisibleSpace]\)\) + 0.5308324325612332`\ \
\[ImaginaryI], \(-0.023470944395083317`\) - 0.0018032415281595202`\ \
\[ImaginaryI], \(\(0.08070927176484025`\)\(\[InvisibleSpace]\)\) + \
0.13209690501383137`\ \[ImaginaryI], \(\(0.9668798406491803`\)\(\
\[InvisibleSpace]\)\) - 0.4209370601193148`\ \[ImaginaryI], \
\(-0.2665385790708668`\) + 1.8236112369879298`\ \[ImaginaryI], \
\(\(0.571562162582398`\)\(\[InvisibleSpace]\)\) + 0.17245438592088333`\ \
\[ImaginaryI], \(-0.011986037045745948`\) - 0.060139708235810066`\ \
\[ImaginaryI], \(-0.015508866956531024`\) + 0.029879892473865514`\ \
\[ImaginaryI], \(-1.2844538901538112`\) -
0.700105530900559`\ \[ImaginaryI], \(-0.1903783966634795`\) + \
0.196099167319036`\ \[ImaginaryI], \(-0.37739501060105113`\) - \
0.6705832211466273`\ \[ImaginaryI], \(\(0.47160683917855595`\)\(\
\[InvisibleSpace]\)\) - 0.032758368181322495`\ \[ImaginaryI], \
\(\(0.3287093191013779`\)\(\[InvisibleSpace]\)\) -
2.0761065629848323`\ \[ImaginaryI], \(-1.3011398399244878`\) - \
1.1150499341461606`\ \[ImaginaryI], \(-0.10008195271649735`\) -
0.03274667192417411`\ \[ImaginaryI], \(\(1.5503519175267138`\)\(\
\[InvisibleSpace]\)\) + 5.175851497233089`\ \[ImaginaryI], \
\(-0.11798624756214479`\) - 0.30387095674910103`\ \[ImaginaryI], \
\(\(0.05149236792613797`\)\(\[InvisibleSpace]\)\) - 0.05611797633650249`\ \
\[ImaginaryI], \(\(0.3749883535387028`\)\(\[InvisibleSpace]\)\) - \
0.2588878194031705`\ \[ImaginaryI], \(\(0.19182517115826753`\)\(\
\[InvisibleSpace]\)\) + 0.44306735255097673`\ \[ImaginaryI], \
\(\(3.214316028223277`\)\(\[InvisibleSpace]\)\) + 0.8872405868409365`\ \
\[ImaginaryI], \(\(0.028486068865737426`\)\(\[InvisibleSpace]\)\) + \
0.02793346444302354`\ \[ImaginaryI], \(-0.14495037675359213`\) + \
0.08945252331672562`\ \[ImaginaryI], \(-0.5053710554330828`\) + \
0.10448766687770047`\ \[ImaginaryI], \(\(1.2963160123487985`\)\(\
\[InvisibleSpace]\)\) + 0.24180860760408177`\ \[ImaginaryI], \
\(-0.20279132023888793`\) - 0.6749256694311778`\ \[ImaginaryI], \
\(-0.28879899874988785`\) - 0.5004326070505861`\ \[ImaginaryI], \
\(\(0.057135705738643947`\)\(\[InvisibleSpace]\)\) + 0.13374412205567043`\ \
\[ImaginaryI], \(-0.21038791692963085`\) + 0.10001923793910605`\ \
\[ImaginaryI], \(\(0.5679634593861724`\)\(\[InvisibleSpace]\)\) - \
0.12208960335530207`\ \[ImaginaryI], \(\(0.042992076295733934`\)\(\
\[InvisibleSpace]\)\) -
0.030595479654774143`\ \[ImaginaryI], \(\(0.011243988746051366`\)\(\
\[InvisibleSpace]\)\) - 0.00771380853812601`\ \[ImaginaryI], \
\(-0.17720172821021596`\) + 0.031356622894106845`\ \[ImaginaryI], \
\(\(0.017067843432539014`\)\(\[InvisibleSpace]\)\) - 0.02836289107481361`\ \
\[ImaginaryI], \(-0.0665527075681258`\) + 0.03140546180968116`\ \
\[ImaginaryI], \(\(0.0018623102046593004`\)\(\[InvisibleSpace]\)\) + \
0.011770205743947632`\ \[ImaginaryI], \(\(0.1735532644770759`\)\(\
\[InvisibleSpace]\)\) - 0.14611835417866842`\ \[ImaginaryI], \
\(\(0.05663546451293114`\)\(\[InvisibleSpace]\)\) - 0.17228981100154175`\ \
\[ImaginaryI], \(-0.09979420401881292`\) + 0.40640671240950577`\ \
\[ImaginaryI]}, {2.1027694983044194`*^-8 -
4.2667251164411164`*^-8\ \[ImaginaryI], \(\(0.`\)\(\[InvisibleSpace]\)\) + \
0.`\ \[ImaginaryI], \(\(0.`\)\(\[InvisibleSpace]\)\) + 0.`\ \[ImaginaryI], \(\
\(0.`\)\(\[InvisibleSpace]\)\) + 0.`\ \[ImaginaryI], 3.997077482605482`*^-7 - \
8.726711706748588`*^-8\ \[ImaginaryI],
4.2851976022747114`*^-8 + 5.689293077129258`*^-9\ \[ImaginaryI], \
\(-1.0841239997414253`*^-8\) -
9.628840681375521`*^-9\ \[ImaginaryI], 4.0301076045123807`*^-7 -
1.6256251039238118`*^-7\ \[ImaginaryI],
6.4566176347147115`*^-6 + 1.1469611667423978`*^-6\ \[ImaginaryI], \
\(-2.1334798924801896`*^-6\) - 7.522115536979149`*^-7\ \[ImaginaryI], \
\(-1.614583248137518`*^-6\) + 1.2552127725078854`*^-6\ \[ImaginaryI], \
\(-2.332277257843185`*^-7\) + 6.318061139335978`*^-8\ \[ImaginaryI], \
1.9027998950498407`*^-7 - 2.5452364153710217`*^-7\ \[ImaginaryI], \
\(-3.477327051629447`*^-7\) - 2.1720027834133005`*^-7\ \[ImaginaryI], \
6.215866904086067`*^-10 - 4.375668032835768`*^-10\ \[ImaginaryI], \
\(-1.3231318709635816`*^-10\) - 9.760865767059635`*^-10\ \[ImaginaryI], \
\(-2.2620338961643774`*^-7\) + 1.6941414650907264`*^-7\ \[ImaginaryI], \
\(-2.8118987661958254`*^-7\) - 2.3793535900623223`*^-7\ \[ImaginaryI], \
6.049461934805361`*^-7 + 1.8557368023061827`*^-7\ \[ImaginaryI], \
\(-1.9649733741880456`*^-6\) + 1.704979672791032`*^-7\ \[ImaginaryI], \
6.837959950705463`*^-7 + 7.592965825823179`*^-7\ \[ImaginaryI], \
\(\(0.00003383343303509766`\)\(\[InvisibleSpace]\)\) - \
0.00031668803035818843`\ \[ImaginaryI], \(-0.00016441953606176652`\) + \
0.00026491077672289437`\ \[ImaginaryI], \(-0.008941584290399606`\) + \
0.0015150848763960845`\ \[ImaginaryI], \(-0.0002193607815940291`\) - \
0.0016816390039251711`\ \[ImaginaryI], \(\(0.0025975128684219387`\)\(\
\[InvisibleSpace]\)\) - 0.0066012564937161155`\ \[ImaginaryI], \
\(-0.004978480690151281`\) - 0.0046096069540488135`\ \[ImaginaryI], \
\(\(0.00110436657354849`\)\(\[InvisibleSpace]\)\) + 0.004263050065374244`\ \
\[ImaginaryI], \(-0.0009010363090302087`\) - 0.0031374233162991313`\ \
\[ImaginaryI], \(-0.0010466809525566405`\) - 0.0025532698518402033`\ \
\[ImaginaryI], \(\(0.0009173090644002712`\)\(\[InvisibleSpace]\)\) + \
0.0008321957584084497`\ \[ImaginaryI], \(-0.00102818107089752`\) +
0.002322700307088049`\ \[ImaginaryI], \(\(0.08827857584018173`\)\(\
\[InvisibleSpace]\)\) - 0.009509598119055463`\ \[ImaginaryI], \
\(\(0.08425361644519337`\)\(\[InvisibleSpace]\)\) +
0.007330331990630105`\ \[ImaginaryI], \(\(0.17974972484919038`\)\(\
\[InvisibleSpace]\)\) - 0.10151432808992114`\ \[ImaginaryI], \
\(\(0.07295473474858931`\)\(\[InvisibleSpace]\)\) +
0.02941400368132179`\ \[ImaginaryI], \(\(0.46124344355575053`\)\(\
\[InvisibleSpace]\)\) -
1.4558613983013797`\ \[ImaginaryI], \(\(0.07685459974968253`\)\(\
\[InvisibleSpace]\)\) -
0.015877394352061112`\ \[ImaginaryI], \(-0.30367725480754365`\) - \
0.11345694866194661`\ \[ImaginaryI], \(-0.22676944686565353`\) + \
0.08532889933891796`\ \[ImaginaryI], \(\(0.01866069532856766`\)\(\
\[InvisibleSpace]\)\) + 0.021331132231891137`\ \[ImaginaryI], \
\(-0.016400568035910546`\) - 0.06927986992883986`\ \[ImaginaryI], \
\(\(0.02184997183645795`\)\(\[InvisibleSpace]\)\) - 0.039351654929251974`\ \
\[ImaginaryI], \(-0.11485460807919899`\) +
0.02915063380216987`\ \[ImaginaryI], \(-0.024582015635991276`\) - \
0.0587636000175366`\ \[ImaginaryI], \(-0.08207439343972928`\) +
0.04244612523681517`\ \[ImaginaryI], \(\(0.027029661505463203`\)\(\
\[InvisibleSpace]\)\) - 0.010925322311520843`\ \[ImaginaryI], \
\(\(0.022042960639327716`\)\(\[InvisibleSpace]\)\) + 0.03384649609406983`\ \
\[ImaginaryI], \(-0.06559892432381802`\) + 0.0048290231303545605`\ \
\[ImaginaryI], \(\(0.011631900910597017`\)\(\[InvisibleSpace]\)\) - \
0.16957717018753746`\ \[ImaginaryI], \(\(0.1848353891830289`\)\(\
\[InvisibleSpace]\)\) - 0.1207243341815562`\ \[ImaginaryI], \
\(\(0.014518936495335363`\)\(\[InvisibleSpace]\)\) + 0.02928253340493723`\ \
\[ImaginaryI], \(-0.00105544720703377`\) -
0.019368779480068394`\ \[ImaginaryI], \(-0.03728570067385072`\) - \
0.05543055498745886`\ \[ImaginaryI], \(\(0.08636071700323851`\)\(\
\[InvisibleSpace]\)\) -
0.06595802168065541`\ \[ImaginaryI], \(\(0.00949596960469721`\)\(\
\[InvisibleSpace]\)\) + 0.02334276603415186`\ \[ImaginaryI], \
\(-0.07977099736099807`\) +
0.13649147952882235`\ \[ImaginaryI], \(\(0.08134205390343487`\)\(\
\[InvisibleSpace]\)\) + 0.01133068077403926`\ \[ImaginaryI], \
\(-0.06378636588443078`\) + 0.1825785762605603`\ \[ImaginaryI], \
\(\(0.10792590612460617`\)\(\[InvisibleSpace]\)\) - 0.30901056226162243`\ \
\[ImaginaryI], \(\(0.06776748836454011`\)\(\[InvisibleSpace]\)\) - \
0.18933117529174406`\ \[ImaginaryI], \(-0.3287553768384069`\) - \
0.07229281971653057`\ \[ImaginaryI], \(-0.016084170867452403`\) - \
0.30473364963629473`\ \[ImaginaryI], \(-0.002269207889508572`\) + \
0.5348406050025077`\ \[ImaginaryI], \(-0.9535745604980823`\) + \
0.1093028970918099`\ \[ImaginaryI], \(\(0.004149391700214356`\)\(\
\[InvisibleSpace]\)\) -
0.33176061515693767`\ \[ImaginaryI], \(-0.11931190434528562`\) + \
0.1488021782853054`\ \[ImaginaryI], \(\(0.3800361312290526`\)\(\
\[InvisibleSpace]\)\) - 0.21082315570803203`\ \[ImaginaryI], \
\(-1.174828069664707`\) -
0.32145600129254903`\ \[ImaginaryI], \(\(0.2607789520287224`\)\(\
\[InvisibleSpace]\)\) + 0.571319262048138`\ \[ImaginaryI], \
\(\(0.5167592353457613`\)\(\[InvisibleSpace]\)\) +
0.04112246860176983`\ \[ImaginaryI], \(-0.0005393634058798316`\) + \
0.0003662269958179693`\ \[ImaginaryI], \(-0.00015731229062524463`\) + \
0.000019345963325736494`\ \[ImaginaryI], \(\(0.00008114234822803032`\)\(\
\[InvisibleSpace]\)\) - 0.0006685164785436801`\ \[ImaginaryI], \
\(\(0.0005756609042868121`\)\(\[InvisibleSpace]\)\) + 0.00007936865497283433`\
\ \[ImaginaryI], \(\(0.00028691618692171`\)\(\[InvisibleSpace]\)\) + \
0.00028934717071818836`\ \[ImaginaryI], \(-0.0005816350473518326`\) - \
0.00009795710382589956`\ \[ImaginaryI], \(-0.000010941771522164284`\) + \
0.00022721121884121536`\ \[ImaginaryI], \(-0.00039563580281367586`\) + \
0.0001149588493258594`\ \[ImaginaryI], \(-9.413863515437175`*^-6\) - \
0.0001299844501109223`\ \[ImaginaryI], \(\(0.00013837924738433705`\)\(\
\[InvisibleSpace]\)\) + 0.00028877731803655753`\ \[ImaginaryI], \
\(\(0.0003487054620635679`\)\(\[InvisibleSpace]\)\) + 0.0001887379614329182`\ \
\[ImaginaryI], \(-0.00047139133861161985`\) - 0.00026611243834231854`\ \
\[ImaginaryI], \(-0.00009034777237445905`\) - 0.000010741266562675742`\ \
\[ImaginaryI], \(-0.00045741342946793083`\) + 0.00025974772696379293`\ \
\[ImaginaryI], \(-0.0008993428553804617`\) - 0.0002367960308219563`\ \
\[ImaginaryI], \(-0.00023641070239008486`\) + 0.00010403814303131419`\ \
\[ImaginaryI], \(-0.0010074392125529203`\) - 0.011011813898324042`\ \
\[ImaginaryI], \(-0.0072107521385074095`\) + 0.0020962990190027935`\ \
\[ImaginaryI], \(\(0.2322579284275751`\)\(\[InvisibleSpace]\)\) - \
0.07187483163639043`\ \[ImaginaryI], \(-0.017968395434927953`\) - \
0.05213032583412297`\ \[ImaginaryI], \(\(0.04101492549617794`\)\(\
\[InvisibleSpace]\)\) - 0.05781905312972336`\ \[ImaginaryI], \
\(-2.241823563051902`\) - 0.6638806247785184`\ \[ImaginaryI], \
\(\(3.7231807156966448`\)\(\[InvisibleSpace]\)\) + 4.141064900928756`\ \
\[ImaginaryI], \(-3.2321784288246187`\) - 3.4833139232559858`\ \[ImaginaryI], \
\(-4.609629297686979`\) + 3.1846450167124956`\ \[ImaginaryI], \
\(-1.447339100854874`\) - 0.49968582628752684`\ \[ImaginaryI], \
\(\(0.2767361533870346`\)\(\[InvisibleSpace]\)\) - 0.13468033122430223`\ \
\[ImaginaryI], \(-1.8069351604027177`\) - 0.006387330181249744`\ \
\[ImaginaryI], \(\(0.09660287518422392`\)\(\[InvisibleSpace]\)\) + \
0.187845256630468`\ \[ImaginaryI], \(\(0.029581592108621362`\)\(\
\[InvisibleSpace]\)\) + 0.052873219749844165`\ \[ImaginaryI], \
\(\(0.46986808856631423`\)\(\[InvisibleSpace]\)\) - 0.12498829627797803`\ \
\[ImaginaryI], \(\(0.1494140057593214`\)\(\[InvisibleSpace]\)\) - \
0.049761274482300964`\ \[ImaginaryI], \(-0.07272327749503527`\) -
0.13531555329842745`\ \[ImaginaryI], \(-0.021857341056074342`\) +
0.003440466953750463`\ \[ImaginaryI], \(-0.02273089849346567`\) - \
0.1303139194377979`\ \[ImaginaryI], \(\(0.23266712313539428`\)\(\
\[InvisibleSpace]\)\) + 0.011347412247304683`\ \[ImaginaryI], \
\(-0.25810605978716356`\) + 0.0022581817127046125`\ \[ImaginaryI]}}\)

In[163]:=
B=ConjugateTranspose[NullSpace[A]];

In[168]:=
Chop[A.B]\[Equal]N[ZeroMatrix[Dimensions[A][[1]],Dimensions[B][[2]]]]

Out[168]=
False

In[169]:=
Chop[A.B,10^(-1)]\[Equal]N[ZeroMatrix[Dimensions[A][[1]],Dimensions[B][[2]]]]

Out[169]=
False

In[172]:=
Chop[A.B,10^(3)]\[Equal]N[ZeroMatrix[Dimensions[A][[1]],Dimensions[B][[2]]]]

Out[172]=
True

```

• Prev by Date: Re: Re: Re: Trigonometric simplification
• Next by Date: RE: General--Difficulties in Understanding Mathematica Syntax
• Previous by thread: Re: General--Exponential simplifications by default
• Next by thread: Re: nullspaces