Re: SubValues
- To: mathgroup at smc.vnet.net
- Subject: [mg71890] Re: SubValues
- From: "Philipp" <Philipp.M.O at gmail.com>
- Date: Sat, 2 Dec 2006 05:11:29 -0500 (EST)
- References: <ekmf8k$8pr$1@smc.vnet.net>
In[1]:= Clear[f]; Scan[(f[#[[1]]][#[[2]]] = 10 #[[1]] + #[[2]]) &, Table[Random[Integer, {1, 10}], {20}, {2}]] In[4]:= SubValues[f] Out[4]= {HoldPattern[f[1][1]] :> 11, HoldPattern[f[1][5]] :> 15, HoldPattern[f[1][7]] :> 17, HoldPattern[f[1][10]] :> 20, HoldPattern[f[4][5]] :> 45, HoldPattern[f[5][1]] :> 51, HoldPattern[f[5][10]] :> 60, HoldPattern[f[6][8]] :> 68, HoldPattern[f[6][10]] :> 70, HoldPattern[f[7][1]] :> 71, HoldPattern[f[7][4]] :> 74, HoldPattern[f[7][5]] :> 75, HoldPattern[f[7][6]] :> 76, HoldPattern[f[8][3]] :> 83, HoldPattern[f[8][8]] :> 88, HoldPattern[f[9][5]] :> 95, HoldPattern[f[9][7]] :> 97} Cheers, Philipp. dimitris wrote: > I noticed the following: > > \!\(f\_i[x_] := x\^i\) > > \!\(\((f\_#1[x] &)\) /@ Range[10]\) > Out[6] > \!\({f\_1[x], f\_2[x], f\_3[x], f\_4[x], f\_5[x], f\_6[x], f\_7[ > x], f\_8[x], f\_9[x], f\_10[x]}\) > > ?f > Global`f > > After I converted to InputForm > > Subscript[f, i][x_] := x^i > > (Subscript[f, #1][x] & ) /@ Range[10] > {Subscript[f, 1][x], Subscript[f, 2][x], > Subscript[f, 3][x], Subscript[f, 4][x], > Subscript[f, 5][x], Subscript[f, 6][x], > Subscript[f, 7][x], Subscript[f, 8][x], > Subscript[f, 9][x], Subscript[f, 10][x]} > > And I tried > > SubValues[Subscript] > {HoldPattern[Subscript[f, i][x_]] :> x^i} > > taking what I want (i.e. where the definition is stored) > > Information["SubValues", LongForm -> False] > "SubValues[f] gives a list of transformation rules \ > corresponding to all subvalues (values for \ > f[x,..][..], etc.) defined for the symbol f." > > Can somebody provide me with further examples of "storing" in > SubValues? > > Regards > Dimitris