Re: Using FindRoot in complex funtion
- To: mathgroup at smc.vnet.net
- Subject: [mg71945] Re: Using FindRoot in complex funtion
- From: Peter Pein <petsie at dordos.net>
- Date: Tue, 5 Dec 2006 06:04:43 -0500 (EST)
- Organization: 1&1 Internet AG
- References: <ekucvg$830$1@smc.vnet.net>
tatsec schrieb: > The program is : > > dotnum=40; > sigma=Sqrt[2]; > For[L=2,L<=dotnum,L=L+2, > FindRoot[Integrate[2^(1/2-L/2)*sigma^(-1-L)*(Abs[t])^(1/2*(-1-L))*BesselK[(1-L)/2,Abs[t]/sigma]/(Sqrt[pi]*Gamma[L/2]),{t,0,y}],{y,1}];] > > when L<30, FindRoot can find the root of function.but L=>30,FindRoot > can't calculation.So How to solve this problem? > Thanks in advance for any help you can give me. > > Raymond > Hi Raymond, have a closer look at your integrand: in the case L==2 you get FullSimplify[#1, t >= 0]&/@ Collect[ExpandAll[Normal[Series[ (2^(1/2 - L/2)*sigma^(-1 - L)*Abs[t]^((1/2)*(-1 - L))* BesselK[(1 - L)/2, Abs[t]/sigma])/(Sqrt[Pi]*Gamma[L/2]) /. {sigma -> Sqrt[2], L -> 2}, {t, 0, 10}]]], t] --> 1/(E^(t/Sqrt[2])*(4*2^(1/4)*t^2)) This can't give a value < infinity, when integrated from 0 to somewhere (David Park mentioned this). For other L you will get similar "results". P²