       Re: Re: Finding the periphery of a region

• To: mathgroup at smc.vnet.net
• Subject: [mg72099] Re: [mg72005] Re: Finding the periphery of a region
• From: Andrzej Kozlowski <akoz at mimuw.edu.pl>
• Date: Mon, 11 Dec 2006 04:55:40 -0500 (EST)
• References: <el8ufm\$st3\$1@smc.vnet.net> <200612081117.GAA20172@smc.vnet.net> <6DA7D258-EA36-456E-A8F7-B4CBE82001B8@mimuw.edu.pl> <457D0248.7020004@metrohm.ch> <78BE6846-13C6-4E0F-B440-B211BBB62250@mimuw.edu.pl> <457D0BAF.9040000@metrohm.ch>

```On 11 Dec 2006, at 16:41, Daniel Huber wrote:
> Hi Andrzej ,
> I think the whole problem arises because we are loking at solutions
> to (in)equations in R that actually lay in C. In C there wouldn't
> be any "singular" points.
> On the other hand, if somebodey has an applied problem involving
> area, then I think he can most of the time simply ignore isolated
> points.
> Anyway, thank's a lot that you pointed me to this  interesting fact.
> Daniel

Well, form the point of view of measure theory an isolated point is
nothing but from the point of view of topology it is enormously
important. (And there are real life applications, e.g. in robotics,
where the existence of isolated points can have quite dramatic effect).
Partly because of such things, from the point of view of topology,
real algebraic sets are much more interesting than complex ones.
Among well known examples that can be plotted in Mathematica are:

The "Cartan umbrella":

z*(x^2 + y^2) - x^3==0

another "umbrella":

x^3+ z*x - y^2 ==0

a surface with curious properties:

x^2 (1-z^2) == x^4 + y^2.

The Nash-Tognoli theorem says that every compact smooth manifold is
diffeomorphic to some non singular real algebraic vaiety.  For
example the Klein bottle here is an algebraic equation of the Klein
bottle:

768*x^4 - 1024*x^5 - 128*x^6 +
512*x^7 - 80*x^8 - 64*x^9 + 16*x^10 + 144*x^2*y^2 -
768*x^3*y^2 - 136*x^4*y^2 + 896*x^5*y^2 -
183*x^6*y^2 - 176*x^7*y^2 + 52*x^8*y^2 + 400*y^4 +
256*x*y^4 - 912*x^2*y^4 + 256*x^3*y^4 + 315*x^4*y^4 -
144*x^5*y^4 - 16*x^6*y^4 + 4*x^8*y^4 - 904*y^6 -
128*x*y^6 + 859*x^2*y^6 - 16*x^3*y^6 - 200*x^4*y^6 +
16*x^6*y^6 + 441*y^8 + 16*x*y^8 - 224*x^2*y^8 +
24*x^4*y^8 - 76*y^10 + 16*x^2*y^10 + 4*y^12 -
2784*x^3*y*z + 4112*x^4*y*z - 968*x^5*y*z -
836*x^6*y*z + 416*x^7*y*z - 48*x^8*y*z +
1312*x*y^3*z + 2976*x^2*y^3*z - 5008*x^3*y^3*z -
12*x^4*y^3*z + 2016*x^5*y^3*z - 616*x^6*y^3*z -
64*x^7*y^3*z + 32*x^8*y^3*z - 1136*y^5*z -
4040*x*y^5*z + 2484*x^2*y^5*z + 2784*x^3*y^5*z -
1560*x^4*y^5*z - 192*x^5*y^5*z + 128*x^6*y^5*z +
1660*y^7*z + 1184*x*y^7*z - 1464*x^2*y^7*z -
192*x^3*y^7*z + 192*x^4*y^7*z - 472*y^9*z -
64*x*y^9*z + 128*x^2*y^9*z + 32*y^11*z - 752*x^4*z^2 +
1808*x^5*z^2 - 1468*x^6*z^2 + 512*x^7*z^2 -
64*x^8*z^2 + 6280*x^2*y^2*z^2 - 5728*x^3*y^2*z^2 -
4066*x^4*y^2*z^2 + 5088*x^5*y^2*z^2 -
820*x^6*y^2*z^2 - 384*x^7*y^2*z^2 + 96*x^8*y^2*z^2 -
136*y^4*z^2 - 7536*x*y^4*z^2 + 112*x^2*y^4*z^2 +
8640*x^3*y^4*z^2 - 2652*x^4*y^4*z^2 -
1152*x^5*y^4*z^2 + 400*x^6*y^4*z^2 + 2710*y^6*z^2 +
4064*x*y^6*z^2 - 3100*x^2*y^6*z^2 - 1152*x^3*y^6*z^2 +
624*x^4*y^6*z^2 - 1204*y^8*z^2 - 384*x*y^8*z^2 +
432*x^2*y^8*z^2 + 112*y^10*z^2 + 3896*x^3*y*z^3 -
7108*x^4*y*z^3 + 3072*x^5*y*z^3 + 768*x^6*y*z^3 -
768*x^7*y*z^3 + 128*x^8*y*z^3 - 3272*x*y^3*z^3 -
4936*x^2*y^3*z^3 + 8704*x^3*y^3*z^3 - 80*x^4*y^3*z^3 -
2496*x^5*y^3*z^3 + 608*x^6*y^3*z^3 + 2172*y^5*z^3 +
5632*x*y^5*z^3 - 2464*x^2*y^5*z^3 - 2688*x^3*y^5*z^3 +
1056*x^4*y^5*z^3 - 1616*y^7*z^3 - 960*x*y^7*z^3 +
800*x^2*y^7*z^3 + 224*y^9*z^3 + 752*x^4*z^4 -
1792*x^5*z^4 + 1472*x^6*z^4 - 512*x^7*z^4 +
64*x^8*z^4 - 3031*x^2*y^2*z^4 + 1936*x^3*y^2*z^4 +
2700*x^4*y^2*z^4 - 2304*x^5*y^2*z^4 +
448*x^6*y^2*z^4 + 697*y^4*z^4 + 3728*x*y^4*z^4 +
24*x^2*y^4*z^4 - 3072*x^3*y^4*z^4 + 984*x^4*y^4*z^4 -
1204*y^6*z^4 - 1280*x*y^6*z^4 + 880*x^2*y^6*z^4 +
280*y^8*z^4 - 800*x^3*y*z^5 + 1488*x^4*y*z^5 -
768*x^5*y*z^5 + 128*x^6*y*z^5 + 992*x*y^3*z^5 +
1016*x^2*y^3*z^5 - 1728*x^3*y^3*z^5 +
480*x^4*y^3*z^5 - 472*y^5*z^5 - 960*x*y^5*z^5 +
576*x^2*y^5*z^5 + 224*y^7*z^5 + 16*x^4*z^6 +
388*x^2*y^2*z^6 - 384*x^3*y^2*z^6 + 96*x^4*y^2*z^6 -
76*y^4*z^6 - 384*x*y^4*z^6 + 208*x^2*y^4*z^6 +
112*y^6*z^6 - 64*x*y^3*z^7 + 32*x^2*y^3*z^7 +
32*y^5*z^7 + 4*y^4*z^8==0

One can plot this using Mathematica's Graphics`ContourPlot3D
package, but it won't come out very nice. It is much better to use
Jens Kuska's excellent MVContourPlot3D funciton, which is a part of
his MathGL3d (one does not need the commercial version to be able to
use this function). Of course one can get the same picture much more
easily with ParametricPlot3D using well known parametric description
of the Klein bottle:

{x,y,z}={(Cos[Ï?/2]*Sin[Î¸] - Sin[Ï?/2]*Sin[2*Î¸] + 2)*
Cos[Ï?], (Cos[Ï?/2]*Sin[Î¸] -
Sin[Ï?/2]*Sin[2*Î¸] + 2)*Sin[Ï?],
Sin[Ï?/2]*Sin[Î¸] + Cos[Ï?/2]*Sin[2*Î¸]}

Actually, the above algebraic equation was obtained form the
parametric one by using GroebnerBasis. It is a nice illustration of
the relation (and difference) between non-constructive mathematics,
like the Nash-Tognoli theorem and computational one. Getting the
algebraic equation from the parametric one without using Mathematica
or a similar program would be quite challenging.

Andrej Kozlowski

```

• Prev by Date: RE: RE: FullSimplify and HypergeometricPFQ
• Next by Date: Re: RE: FullSimplify and HypergeometricPFQ
• Previous by thread: Re: Re: Finding the periphery of a region
• Next by thread: Re: Re: Finding the periphery of a region