Re: singular point list (NIntegrate)

*To*: mathgroup at smc.vnet.net*Subject*: [mg72214] Re: singular point list (NIntegrate)*From*: "dimitris" <dimmechan at yahoo.com>*Date*: Thu, 14 Dec 2006 05:49:45 -0500 (EST)*References*: <elot8j$p9a$1@smc.vnet.net>

Something like? nintSing1[f_, {x_, a_, b_, c_}, opts___] := Plus @@ (NIntegrate[f, {x, #1[[1]], #1[[2]]}, opts] & ) /@ Partition[Range[a, b, c], 2, 1] nintSing1[x^2*Sin[1/x], {x, -1, 3, 1/5}, MinRecursion -> 6, MaxRecursion -> 12] 3.820553120346208 Or? nintSing2[f_, {x_, a_, b_, c___}, opts___] := Plus @@ (NIntegrate[f, {x, #1[[1]], #1[[2]]}, opts] & ) /@ Partition[{a, c, b}, 2, 1] nintSing2[x^2*Sin[1/x], {x, -1, 3, 0, 1, 2}] 3.820553120346208 Dimitris Ï/Ç wtplasar at ehu.es Ýãñáøå: > Hi, > > I want to tell Mathematica to deal with the singular points in a > numerical integration. In particular, I would like to give easily a > large number of intermediate points. I would do it like that in a > trivial example > > > mybounds[xmin_,xmax_,divs_]:= > Prepend[Table[xmin+i*(xmax-xmin)/divs,{i,0,divs}],x] > > > NIntegrate[x^2 Sin[1/x],Evaluate[mybounds[-1,3,20]]] > > but I think my way of doing it is not very time efficient because of > the Evaluate command, so I wonder if there is a way round it. > > Thanks, > > Ruth