MathGroup Archive 2006

[Date Index] [Thread Index] [Author Index]

Search the Archive

A beginer's simple question about Mathematica...

  • To: mathgroup at smc.vnet.net
  • Subject: [mg63540] A beginer's simple question about Mathematica...
  • From: leelsuc at yahoo.com
  • Date: Wed, 4 Jan 2006 03:17:19 -0500 (EST)
  • Sender: owner-wri-mathgroup at wolfram.com

I try to run

Integrate[x*Exp[-((x-2*a)^2/(8*a)+(y-b)^2/(2*b)+(z*x-y-c)^2/(2*c))],{x,-\[infinity],0},{y,-\[infinity],+\[infinity]}]

get

\!\(\(\(1\/\@\(1\/b +
      1\/c\)\)\((\@\(2\ p\)\ If[Re[z] > \(-\(1\/2\)\) && Re[\(b + c +
4\ a\ z\
\^2\)\/\(8\ a\ b +
            8\ a\ c\)] >
                  0, \(-\(\(2\ \[ExponentialE]\^\(1\/2\ \((\(-a\) - b -
\
c)\)\)\ \((\(-\[ExponentialE]\^\(\(a\ \((b + c)\)\ \((1 + 2\
z)\)\^2\)\/\(2\ \
\((b + c + 4\
                a\ z\^2)\)\)\)\)\ \@\(2\ p\)\ \((1 + 2\ z)\) + 2\
\@\(\(b + c \
+ 4\ a\ z\^2\)\/\(a\ b + a\ c\)\) + \[ExponentialE]\^\(\(a\ \((b +
c)\)\ \((1 \
+ 2\ z)\)\^2\)\/\(2\ \((b + c + 4\ a\ z\^2)\)\)\)\ \@\(2\ p\)\ \((1 +
2\ z)\)\
\ Erf[\(1 + 2\ z\)\/\(\@2\ \@\(\(b + c + 4\ a\ z\^2\)\/\(a\ b + a\ \
c\)\)\)])\)\)\/\((\(b + c + 4\ a\ z\^2\)\/\(a\ b + a\
c\))\)\^\(3/2\)\)\),
                    Integrate[\(-\[ExponentialE]\^\(-\(\(4\ a\^2\ \((b
+ c)\) \
+ \((b + c)\)\ x\^2 + 4\ a\ \((b\^2 + c\^2 +
                    x\^2\ z\^2 - c\ \((\(-x\) - 2\ x\ z)\) + b\ \((2\ c
+ x\ \
\((1 + 2\ z)\))\))\)\)\/\(8\ a\ \((b + c)\)\)\)\)\)\ x, {x, 0, 8}, \
Assumptions -> Re[z] = \(-\(1\/2\)\) || \((Re[z] > \(-\(1\/2\)\) &&
Re[\(b + \
c + 4\ a\ z\^2\)\/\(8\ a\ b + 8\ a\ c\)] = 0)\)]])\)\)\)


What does this result mean? 

Thanks a lot for replying.


  • Prev by Date: Re: Moments of gaussian sums?
  • Next by Date: Re: FindMinimum with list arguments
  • Previous by thread: Re: Moments of gaussian sums?
  • Next by thread: Re: A beginer's simple question about Mathematica...