A beginer's simple question about Mathematica...
- To: mathgroup at smc.vnet.net
- Subject: [mg63540] A beginer's simple question about Mathematica...
- From: leelsuc at yahoo.com
- Date: Wed, 4 Jan 2006 03:17:19 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
I try to run Integrate[x*Exp[-((x-2*a)^2/(8*a)+(y-b)^2/(2*b)+(z*x-y-c)^2/(2*c))],{x,-\[infinity],0},{y,-\[infinity],+\[infinity]}] get \!\(\(\(1\/\@\(1\/b + 1\/c\)\)\((\@\(2\ p\)\ If[Re[z] > \(-\(1\/2\)\) && Re[\(b + c + 4\ a\ z\ \^2\)\/\(8\ a\ b + 8\ a\ c\)] > 0, \(-\(\(2\ \[ExponentialE]\^\(1\/2\ \((\(-a\) - b - \ c)\)\)\ \((\(-\[ExponentialE]\^\(\(a\ \((b + c)\)\ \((1 + 2\ z)\)\^2\)\/\(2\ \ \((b + c + 4\ a\ z\^2)\)\)\)\)\ \@\(2\ p\)\ \((1 + 2\ z)\) + 2\ \@\(\(b + c \ + 4\ a\ z\^2\)\/\(a\ b + a\ c\)\) + \[ExponentialE]\^\(\(a\ \((b + c)\)\ \((1 \ + 2\ z)\)\^2\)\/\(2\ \((b + c + 4\ a\ z\^2)\)\)\)\ \@\(2\ p\)\ \((1 + 2\ z)\)\ \ Erf[\(1 + 2\ z\)\/\(\@2\ \@\(\(b + c + 4\ a\ z\^2\)\/\(a\ b + a\ \ c\)\)\)])\)\)\/\((\(b + c + 4\ a\ z\^2\)\/\(a\ b + a\ c\))\)\^\(3/2\)\)\), Integrate[\(-\[ExponentialE]\^\(-\(\(4\ a\^2\ \((b + c)\) \ + \((b + c)\)\ x\^2 + 4\ a\ \((b\^2 + c\^2 + x\^2\ z\^2 - c\ \((\(-x\) - 2\ x\ z)\) + b\ \((2\ c + x\ \ \((1 + 2\ z)\))\))\)\)\/\(8\ a\ \((b + c)\)\)\)\)\)\ x, {x, 0, 8}, \ Assumptions -> Re[z] = \(-\(1\/2\)\) || \((Re[z] > \(-\(1\/2\)\) && Re[\(b + \ c + 4\ a\ z\^2\)\/\(8\ a\ b + 8\ a\ c\)] = 0)\)]])\)\)\) What does this result mean? Thanks a lot for replying.