orthogonal functions from normalized standing wave functions
- To: mathgroup at smc.vnet.net
- Subject: [mg67899] orthogonal functions from normalized standing wave functions
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Wed, 12 Jul 2006 05:05:41 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
For several years I have been trying to get orthogonal functions out of circular cycloidal standing waves. By converting them to roses (by subtraction the case of a circle) that are Fourier function like I was finally successful today. ( these also work for n->{-1,-8}). Clear[p, ps, t, n, Inm, Enm] (* normalized standing wave functions*) (* circular standing waves with circle Exp[I*t] subtracted gives normalized \ roses ( related to Fourier functions)*) w[n_] = FullSimplify[Sqrt[1/Integrate[((2 - 1/n)*Exp[I*t]/2 + Exp[I*t*(n - \ 1)]/(2*n) - Exp[I*t])*((2 - 1/n)*Exp[-I*t]/2 + Exp[-I*t*(n - 1)]/(2*n) - Exp[-I*t]), {t, -Pi, Pi}]]] p[t_, n_] = FullSimplify[ w[n]*((2 - 1/n)*Exp[I*t]/2 + Exp[I*t*(n - 1)]/(2*n) - Exp[I*t])] ps[t_, n_] = FullSimplify[w[n]*((2 - 1/n)* Exp[-I*t]/2 + Exp[-I*t*(n - 1)]/(2*n) - Exp[-I*t])] Inm = Table[2*(N[Integrate[p[x, n]*ps[x, m], {x, -Pi, Pi}]] - 0.5), { n, 3, 8}, {m, 3, 8}] MatrixForm[Inm] Enm = Table[2*(N[Integrate[p[x, n]*(D[ ps[x, m], {x, 2}]), {x, -Pi, Pi}]] + .5), {n, 3, 8}, {m, 3, 8}] MatrixForm[Enm] (* here are the standing waves themselves*) Clear[w,ps,g,g1] w[n_] = FullSimplify[Sqrt[1/Integrate[((2 - 1/n)*Exp[I* t]/2 + Exp[I*t*(n - 1)]/(2*n) - Exp[I*t])*((2 - 1/n)*Exp[-I*t]/2 + Exp[-I*t*(n - 1)]/(2*n)), {t, -Pi, Pi}]]] p[t_, n_] = FullSimplify[w[n]*((2 - 1/n)*Exp[I*t]/2 + Exp[I*t*(n - 1)]/(2*n))] g = Table[ParametricPlot[{Re[p[t, n]], Im[p[t, n]]}, {t, -Pi, Pi}], {n, 3, 8}] Show[g] g1 = Table[ParametricPlot[{Re[p[t, n]], Im[p[t, n]]}, {t, -Pi, Pi}], {n, -8, -1}] Show[g1]