Re: orthogonal functions from normalized standing wave functions
- To: mathgroup at smc.vnet.net
- Subject: [mg68038] Re: orthogonal functions from normalized standing wave functions
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Fri, 21 Jul 2006 05:37:29 -0400 (EDT)
- References: <e92eja$lte$1@smc.vnet.net> <e9frat$2jv$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
The relationship of spherical harmonics to areas like projective planes isn't obvious. I noticed this several years ago and thought others should be aware of this relationship! Mathematica: FullSimplify[ComplexExpand[{-Re[SphericalHarmonicY[2, 1, p, t]], -Im[SphericalHarmonicY[2, 1, p, t]], Im[ SphericalHarmonicY[2, 2, p, t]]}]/( Sqrt[15/(2*Pi)]/4)] ParametricPlot3D[{Re[SphericalHarmonicY[2, 1, p, t]], Im[SphericalHarmonicY[2, 1, p, t]], Im[ SphericalHarmonicY[2, 2, p, t]]}/( Sqrt[15/(2*Pi)]/4), {p, 0, Pi}, {t, 0, Pi}] (* so(3) like matrix wit {x,y,z} a sphere*) M = {{0, Sin[p]*Sin[t], -Sin[p]*Cos[t]}, {-Sin[p]*Sin[t], 0, Cos[p]}, {Sin[p]*Cos[t], -Cos[p], 0}} M2 = FullSimplify[2*M.M] MatrixForm[M2] (* picking out the spherical harmonics*) {M2[[1, 2]], M2[[1, 3]], M2[[2, 3]]} ParametricPlot3D[{M2[[1, 2]], M2[[1, 3]], M2[[2, 3]]}, {p, 0, Pi}, {t, 0, Pi}]