Re: Quaternion problem--> quantum differeentials
- To: mathgroup at smc.vnet.net
- Subject: [mg68069] Re: Quaternion problem--> quantum differeentials
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Fri, 21 Jul 2006 17:36:07 -0400 (EDT)
- References: <e7ap5q$952$1@smc.vnet.net> <e7lf1d$3l9$1@smc.vnet.net> <e7no3j$97f$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Here is an effort to get a space-time polar quantum LaPlacian. Quantum numbers in the q^4 powers result from a hyper-plate type of vibrational equation. The result doesn't appear normalizable in simple terms. Dividing out : MatrixPower[qr.qrs, -1] would give a Klein-Gordon type factor. Table[FullSimplify[ExpandAll[dqr[[j]].dqrs[[j]]]*MatrixPower[qr.qrs, -1]], { j, 1, 4}] n and o quantum number factors have a complex wave function term which if solves as unity in each case tends to give quantum number angular interdependence. A radial Chladni type vector on the "plate" as: qr0 as the base Rodrigues quaternion psi=(Cos[l*r0]+Cos[m*r]+Cos[n*t]+Cos[o*p])*qr0 might represent standing waves for a four quantum model such as this. Mathematica: Clear[a, m, m1, qr, dqr, qrs, dqrs, v, w, x, y, z, t, q, i, j, k] << Algebra`Quaternions` i = {{0, 1}, {-1, 0}}; j = {{0, I}, {I, 0}}; k = {{I, 0}, {0, -I}}; e = IdentityMatrix[2]; q[t_, x_, y_, z_] := e*t + x*i + j*y + k*z; (* Rodrigues quaternion : quantum number functional definition : r0 radial distance/ Bessel - like, r time angle, {t, p} polar sphere angles*) qr = Exp[l*r0]*q[Cos[m*r], Sin[m*r]* Sin[n*p]*Cos[o*t], Sin[m*r]*Sin[n*p]*Sin[0*t], Sin[m*r]*Cos[n*p]]; qrs = Exp[l*r0]*q[Cos[m*r], -Sin[m*r]*Sin[n*p]*Cos[o*t], \ -Sin[m*r]*Sin[n*p]*Sin[0*t], -Sin[m*r]*Cos[n*p]]; (* Linear vector differential definition *) v = {r0, r, p, t}; (* space - time polar differential factors defined: not derived directly*) w = {1, 1/Exp[2*r0], 1/Exp[2*r0], 1/(Exp[2*r0]*Sin[t]^2)}; dqr = Table[FullSimplify[w[[i]]*D[qr, {v[[i]], 2}]], {i, 1, 4}] dqrs = Table[FullSimplify[w[[i]]*D[qrs, {v[[i]], 2}]], {i, 1, 4}] Table[FullSimplify[ExpandAll[dqr[[j]].dqrs[[j]]]], {j, 1, 4}] > > > >