Re: Quaternion problem--> Jacobian derivation/ Metric
- To: mathgroup at smc.vnet.net
- Subject: [mg68089] Re: Quaternion problem--> Jacobian derivation/ Metric
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Sat, 22 Jul 2006 06:24:12 -0400 (EDT)
- References: <e7ap5q$952$1@smc.vnet.net> <e7lf1d$3l9$1@smc.vnet.net> <e7no3j$97f$1@smc.vnet.net> <e9ri0i$pa1$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
I did Jacobians and metrics way back in Mathematica using a Jacobian matrix form from Theoretical Mechanics ,Ames and Murnagham, Dover Books. I stuck the Rodrigues formula in that to get both the correct differential factors and the metric. I just had a feeling that something was wrong with the equations this morning! Right factors are: w = {1/Exp[2*r0], 1/Exp[2*r0], 1/(Exp[2*r0]*Sin[r]^2*Sin[t]^2), 1/(Exp[2*r0]*Sin[d]^2)}; It still gives the Klein-Gorden plate q^4 quantum result with angular terms for the y and z variables. Suppose we think of this as the Weinberg U(1)*SU(2) Weak -Electromagnetic as an Quaternion equation, then we have four quantum numbers in Leptons in the quaternion shape. Mathematica: (* Rodrigues quaternion as a four space Jacobian and metric*) (*The hard way: there has got to be a more compact way of doing this!*) Exp[r]*{Cos[d], Sin[d]*Sin[p]*Cos[t], Sin[d]*Sin[p]*Sin[t], Sin[d]*Cos[p]} x = Exp[r]*Sin[d]*Sin[p]*Cos[t] y = Exp[r]*Sin[d]*Sin[p]*Sin[t] z = Exp[r]*Sin[d]*Cos[p] t0 = Exp[r]*Cos[d] xr = D[x, r] yr = D[y, r] zr = D[z, r] tr = D[t0, r] xt = D[x, t] yt = D[y, t] zt = D[z, t] tt = D[t0, t] xp = D[x, p] yp = D[y, p] zp = D[z, p] tp = D[t0, p] xd = D[x, d] yd = D[y, d] td = D[t0, d] h1 = FullSimplify[1/Sqrt[xr^2 + yr^2 + zr^2 + tr^2]] h2 = FullSimplify[1/Sqrt[xt^2 + yt^2 + zt^2 + tt^2]] h3 = FullSimplify[1/Sqrt[xp^2 + yp^2 + zp^2 + tp^2]] h4 = FullSimplify[1/Sqrt[xd^2 + yd^2 + zd^2 + td^2]] (*4d metric defined*) ds2 = FullSimplify[ExpandAll[dr2/h1^2 + dt2/h2^2 + dp2/h3^2 - dt02/h4^2]] rra = Simplify[Expand[1/h1^2]] tta = Simplify[Expand[1/h2^2]] ppa = Simplify[Expand[1/h3^2]] dda = Simplify[Expand[1/h4^2]] (* Corrected factors for the differential equation from Jacobian factors*) Clear[a, m, m1, qr, dqr, qrs, dqrs, v, w, x, y, z, t, q, i, j, k] << Algebra`Quaternions` i = {{0, 1}, {-1, 0}}; j = {{0, I}, {I, 0}}; k = {{I, 0}, {0, -I}}; e = IdentityMatrix[2]; q[t_, x_, y_, z_] := e*t + x*i + j*y + k*z; (* Rodrigues quaternion : quantum number functional definition : r0 radial distance/ Bessel - like, r time angle, {t, p} polar sphere angles*) qr = Exp[l*r0]*q[Cos[m*r], Sin[m*r]* Sin[n*p]*Cos[o*t], Sin[m*r]*Sin[n*p]*Sin[0*t], Sin[m*r]*Cos[n*p]]; qrs = Exp[l*r0]*q[Cos[m*r], -Sin[m*r]*Sin[n*p]*Cos[o*t], \ -Sin[m*r]*Sin[n*p]*Sin[0*t], -Sin[m*r]*Cos[n*p]]; (* Linear vector differential definition *) v = {r0, r, p, t}; (* space - time polar differential factors defined: derived*) w = {1/Exp[2*r0], 1/Exp[2*r0], 1/(Exp[2*r0]*Sin[ r]^2*Sin[t]^2), 1/(Exp[2*r0]*Sin[d]^2)}; dqr = Table[FullSimplify[w[[i]]*D[qr, {v[[i]], 2}]], {i, 1, 4}] dqrs = Table[FullSimplify[w[[i]]*D[qrs, {v[[i]], 2}]], {i, 1, 4}] Table[FullSimplify[ExpandAll[dqr[[j]].dqrs[[j]]]*MatrixPower[qr.qrs, -1]], { j, 1, 4}] Roger Bagula wrote: >Here is an effort to get a space-time polar quantum LaPlacian. >Quantum numbers in the q^4 powers result from a hyper-plate >type of vibrational equation. >The result doesn't appear normalizable in simple terms. >Dividing out : >MatrixPower[qr.qrs, -1] >would give a Klein-Gordon type factor. >Table[FullSimplify[ExpandAll[dqr[[j]].dqrs[[j]]]*MatrixPower[qr.qrs, >-1]], { j, 1, 4}] > >n and o quantum number factors have a complex wave function term which >if solves as unity >in each case tends to give quantum number angular interdependence. >A radial Chladni type vector on the "plate" as: qr0 as the base >Rodrigues quaternion >psi=(Cos[l*r0]+Cos[m*r]+Cos[n*t]+Cos[o*p])*qr0 >might represent standing waves for a four quantum model such as this. >Mathematica: >Clear[a, m, m1, qr, dqr, qrs, dqrs, v, w, x, y, z, t, q, i, j, k] ><< Algebra`Quaternions` >i = {{0, 1}, {-1, 0}}; >j = {{0, I}, {I, 0}}; >k = {{I, 0}, {0, -I}}; >e = IdentityMatrix[2]; >q[t_, x_, y_, z_] := e*t + x*i + j*y + k*z; >(* Rodrigues quaternion : quantum number functional > definition : r0 radial distance/ Bessel - like, > r time angle, {t, p} polar sphere angles*) >qr = Exp[l*r0]*q[Cos[m*r], Sin[m*r]* > Sin[n*p]*Cos[o*t], Sin[m*r]*Sin[n*p]*Sin[0*t], Sin[m*r]*Cos[n*p]]; >qrs = Exp[l*r0]*q[Cos[m*r], -Sin[m*r]*Sin[n*p]*Cos[o*t], \ >-Sin[m*r]*Sin[n*p]*Sin[0*t], -Sin[m*r]*Cos[n*p]]; >(* Linear vector differential definition *) >v = {r0, r, p, t}; >(* space - time polar differential factors defined: not derived directly*) >w = {1, 1/Exp[2*r0], 1/Exp[2*r0], 1/(Exp[2*r0]*Sin[t]^2)}; >dqr = Table[FullSimplify[w[[i]]*D[qr, {v[[i]], 2}]], {i, 1, 4}] >dqrs = Table[FullSimplify[w[[i]]*D[qrs, {v[[i]], 2}]], {i, 1, 4}] >Table[FullSimplify[ExpandAll[dqr[[j]].dqrs[[j]]]], {j, 1, 4}] > > > >> >> >> >> > > >