Re: Quaternion problem--> Gell-Man version as dual quaternion
- To: mathgroup at smc.vnet.net
- Subject: [mg68132] Re: Quaternion problem--> Gell-Man version as dual quaternion
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Tue, 25 Jul 2006 04:01:32 -0400 (EDT)
- References: <e7ap5q$952$1@smc.vnet.net> <e7lf1d$3l9$1@smc.vnet.net> <e7no3j$97f$1@smc.vnet.net> <e9ri0i$pa1$1@smc.vnet.net> <e9sukq$rl6$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
I made up an SU(3) quantum Rodigues that appears to work too... Clear[a, m, m1, qr, dqr, qrs, dqrs, v, w, x, y, z, t, q, i, j, k] s[1] = {{1, 0, 0}, {0, -1, 0}, {0, 0, 0}} s[2] = {{1, 0, 0}, {0, 1, 0}, {0, 0, -2}}/Sqrt[3] s[3] = {{0, 1, 0}, {1, 0, 0}, {0, 0, 0}} s[4] = {{0, -I, 0}, {I, 0, 0}, {0, 0, 0}} s[5] = {{0, 0, 1}, {0, 0, 0}, {1, 0, 0}} s[6] = {{0, 0, I}, {0, 0, 0}, {-I, 0, 0}} s[7] = {{0, 0, 0}, {0, 0, 1}, {0, 1, 0}} s[8] = {{0, 0, 0}, {0, 0, I}, {0, -I, 0}} q[t_, x_, y_, z_, t1_, x1_, y1_, z1_] := s[1]*t + x* s[3] + y*s[5] + s[7]*z + s[1]*t1 + s[3]*s1 + s[5]*y1 + s[7]*z1; (* SU(3) as Lorentzian Rodrigues dual quaternion : quantum number functional definition : r0 radial distance/ Bessel - like, r, r1 time angle, {t, p, t1, p1} polar sphere angles*) qr = Exp[l*r0]*q[Cos[m*r], Sin[m*r]*Sin[n*p]*Cos[o*t], Sin[m*r]*Sin[n*p]*Sin[0*t], Sin[ m*r]*Cos[n*p], Cos[m*r], Sin[m1*r1]*Sin[n1*p1]*Cos[o1*t1], Sin[m1*r1]*Sin[n1*p1]*Sin[01*t1], Sin[m1* r1]*Cos[n1*p1]]; qrs = Exp[l*r0]*q[Cos[m*r], -Sin[m*r]*Sin[n*p]*Cos[o*t], -Sin[m*r]*Sin[ n*p]*Sin[0*t], -Sin[m*r]*Cos[n*p], Cos[m1*r1], - Sin[m1*r1]*Sin[n1*p1]*Cos[o1*t1], -Sin[m1*r1]*Sin[n1*p1]*Sin[01*t1], - Sin[m1*r1]*Cos[n1*p1]]; (* Linear vector differential definition : r0 used twice to get 8 variable*) v = {r0, r, p, t, r0, r1, p1, t1}; (* space - time polar differential factors defined*) w = {1/Exp[2*r0], 1/Exp[2*r0], 1/(Exp[2*r0]*Sin[t]^2*Sin[r]^2), 1/(Exp[2*r0]*Sin[r]^2), 1/Exp[2*r0], 1/Exp[2*r0], 1/(Exp[2*r0]*Sin[t1]^2* Sin[r1]^2), 1/(Exp[2*r0]*Sin[r1]^2)}; dqr = Table[FullSimplify[w[[i]]*D[qr, {v[[i]], 2}]], {i, 1, 8}] dqrs = Table[FullSimplify[w[[i]]*D[qrs, {v[[i]], 2}]], {i, 1, 8}] Table[FullSimplify[ExpandAll[dqr[[j]].dqrs[[j]]]], {j, 1, 8}] Table[FullSimplify[ExpandAll[dqr[[j]].dqrs[[j]]]*MatrixPower[qr.qrs, -1]], { j, 1, 8}] Roger Bagula wrote: >I did Jacobians and metrics way back in Mathematica using >a Jacobian matrix form from Theoretical Mechanics ,Ames and Murnagham, >Dover Books. >I stuck the Rodrigues formula in that to get both the correct >differential factors >and the metric. I just had a feeling that something was wrong with the >equations this morning! > >Right factors are: >w = {1/Exp[2*r0], 1/Exp[2*r0], 1/(Exp[2*r0]*Sin[r]^2*Sin[t]^2), >1/(Exp[2*r0]*Sin[d]^2)}; > >It still gives the Klein-Gorden plate q^4 quantum result with angular >terms for the y and z variables. >Suppose we think of this as the Weinberg U(1)*SU(2) Weak -Electromagnetic >as an Quaternion equation, then we have four quantum numbers in >Leptons in the quaternion shape. >Mathematica: >(* Rodrigues quaternion as a four space Jacobian and metric*) >(*The hard way: there has got to be a more compact way of doing this!*) >Exp[r]*{Cos[d], Sin[d]*Sin[p]*Cos[t], Sin[d]*Sin[p]*Sin[t], Sin[d]*Cos[p]} >x = Exp[r]*Sin[d]*Sin[p]*Cos[t] >y = Exp[r]*Sin[d]*Sin[p]*Sin[t] >z = Exp[r]*Sin[d]*Cos[p] >t0 = Exp[r]*Cos[d] >xr = D[x, r] >yr = D[y, r] >zr = D[z, r] >tr = D[t0, r] >xt = D[x, t] >yt = D[y, t] >zt = D[z, t] >tt = D[t0, t] >xp = D[x, p] >yp = D[y, p] >zp = D[z, p] >tp = D[t0, p] >xd = D[x, d] >yd = D[y, d] >td = D[t0, d] >h1 = FullSimplify[1/Sqrt[xr^2 + yr^2 + zr^2 + tr^2]] >h2 = FullSimplify[1/Sqrt[xt^2 + yt^2 + zt^2 + tt^2]] >h3 = FullSimplify[1/Sqrt[xp^2 + yp^2 + zp^2 + tp^2]] >h4 = FullSimplify[1/Sqrt[xd^2 + yd^2 + zd^2 + td^2]] >(*4d metric defined*) >ds2 = FullSimplify[ExpandAll[dr2/h1^2 + dt2/h2^2 + dp2/h3^2 - dt02/h4^2]] >rra = Simplify[Expand[1/h1^2]] >tta = Simplify[Expand[1/h2^2]] >ppa = Simplify[Expand[1/h3^2]] >dda = Simplify[Expand[1/h4^2]] > >(* Corrected factors for the differential equation from Jacobian factors*) >Clear[a, m, m1, qr, dqr, qrs, dqrs, v, w, x, y, z, t, q, i, j, k] ><< Algebra`Quaternions` >i = {{0, 1}, {-1, 0}}; >j = {{0, I}, {I, 0}}; >k = {{I, 0}, {0, -I}}; >e = IdentityMatrix[2]; >q[t_, x_, y_, z_] := e*t + x*i + j*y + k*z; >(* Rodrigues quaternion : quantum number functional > definition : r0 radial distance/ Bessel - like, > r time angle, {t, p} polar sphere angles*) >qr = Exp[l*r0]*q[Cos[m*r], Sin[m*r]* > Sin[n*p]*Cos[o*t], Sin[m*r]*Sin[n*p]*Sin[0*t], Sin[m*r]*Cos[n*p]]; >qrs = Exp[l*r0]*q[Cos[m*r], -Sin[m*r]*Sin[n*p]*Cos[o*t], \ >-Sin[m*r]*Sin[n*p]*Sin[0*t], -Sin[m*r]*Cos[n*p]]; >(* Linear vector differential definition *) >v = {r0, r, p, t}; >(* space - time polar differential factors defined: derived*) >w = {1/Exp[2*r0], 1/Exp[2*r0], 1/(Exp[2*r0]*Sin[ > r]^2*Sin[t]^2), 1/(Exp[2*r0]*Sin[d]^2)}; >dqr = Table[FullSimplify[w[[i]]*D[qr, {v[[i]], 2}]], {i, 1, 4}] >dqrs = Table[FullSimplify[w[[i]]*D[qrs, {v[[i]], 2}]], {i, 1, 4}] >Table[FullSimplify[ExpandAll[dqr[[j]].dqrs[[j]]]*MatrixPower[qr.qrs, -1]], { > j, 1, 4}] >Roger Bagula wrote: > > > >>Here is an effort to get a space-time polar quantum LaPlacian. >>Quantum numbers in the q^4 powers result from a hyper-plate >>type of vibrational equation. >>The result doesn't appear normalizable in simple terms. >>Dividing out : >>MatrixPower[qr.qrs, -1] >>would give a Klein-Gordon type factor. >>Table[FullSimplify[ExpandAll[dqr[[j]].dqrs[[j]]]*MatrixPower[qr.qrs, >>-1]], { j, 1, 4}] >> >>n and o quantum number factors have a complex wave function term which >>if solves as unity >>in each case tends to give quantum number angular interdependence. >>A radial Chladni type vector on the "plate" as: qr0 as the base >>Rodrigues quaternion >>psi=(Cos[l*r0]+Cos[m*r]+Cos[n*t]+Cos[o*p])*qr0 >>might represent standing waves for a four quantum model such as this. >>Mathematica: >>Clear[a, m, m1, qr, dqr, qrs, dqrs, v, w, x, y, z, t, q, i, j, k] >><< Algebra`Quaternions` >>i = {{0, 1}, {-1, 0}}; >>j = {{0, I}, {I, 0}}; >>k = {{I, 0}, {0, -I}}; >>e = IdentityMatrix[2]; >>q[t_, x_, y_, z_] := e*t + x*i + j*y + k*z; >>(* Rodrigues quaternion : quantum number functional >> definition : r0 radial distance/ Bessel - like, >> r time angle, {t, p} polar sphere angles*) >>qr = Exp[l*r0]*q[Cos[m*r], Sin[m*r]* >> Sin[n*p]*Cos[o*t], Sin[m*r]*Sin[n*p]*Sin[0*t], Sin[m*r]*Cos[n*p]]; >>qrs = Exp[l*r0]*q[Cos[m*r], -Sin[m*r]*Sin[n*p]*Cos[o*t], \ >>-Sin[m*r]*Sin[n*p]*Sin[0*t], -Sin[m*r]*Cos[n*p]]; >>(* Linear vector differential definition *) >>v = {r0, r, p, t}; >>(* space - time polar differential factors defined: not derived directly*) >>w = {1, 1/Exp[2*r0], 1/Exp[2*r0], 1/(Exp[2*r0]*Sin[t]^2)}; >>dqr = Table[FullSimplify[w[[i]]*D[qr, {v[[i]], 2}]], {i, 1, 4}] >>dqrs = Table[FullSimplify[w[[i]]*D[qrs, {v[[i]], 2}]], {i, 1, 4}] >>Table[FullSimplify[ExpandAll[dqr[[j]].dqrs[[j]]]], {j, 1, 4}] >> >> >> >> >> >>> >>> >>> >>> >> >> >> >> > > >