Re: Beginner--Error in Series expansion
- To: mathgroup at smc.vnet.net
- Subject: [mg68166] Re: Beginner--Error in Series expansion
- From: Peter Pein <petsie at dordos.net>
- Date: Thu, 27 Jul 2006 05:29:45 -0400 (EDT)
- References: <ea72pl$k7e$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
abdou.oumaima at hotmail.com schrieb: > Hello mathgroup, > > When I'm trying to find a power series of this function, It doesn't yield the correct expression: > > Z[L_] = Sum[(((-1)^Lp/( > L - Lp + 1))*(1/ksi^Lp)), {Lp, 0, L}] - (-1)^L Log[1 + ksi]/ksi^(L + 1) > > devZ[L_] = Normal[Series[Z[L], {ksi, 0, 2}]] > devZ[3] > > I get: devZ[3]= 1/4 -1/ksi^3+1/2 ksi +(ksi-ksi^2/2)/ksi^4. > This code must yield: > devZ[3]= ksi/5 - ksi^2/6 +0(ksi^3) > No, there must not be an O[ksi] because you've got a call to Normal[] in the definition of devZ. > How to correct this error. > > Any help will be very welcome. > > Lian. > > > Hi Lian, use SetDelayed (":=") for devZ: devZ[L_] := Normal[Series[Z[L], {ksi, 0, 2}]] devZ[3] --> ksi/5 - ksi^2/6 Altenatively you can calculate the series to a higher degree and call devZ together with Apart: dz[L_] = Normal[Series[Z[L], {ksi, 0, 6}]] Apart[dz[3]] --> ksi^(-1 - L)*((-(-1)^L)*ksi + (1/2)*(-1)^L*ksi^2 - (1/3)*(-1)^L*ksi^3 + (1/4)*(-1)^L*ksi^4 - (1/5)*(-1)^L*ksi^5 + (1/6)*(-1)^L*ksi^6) + Sum[(-1)^Lp/(ksi^Lp*(1 + L - Lp)), {Lp, 0, L}] ksi/5 - ksi^2/6 Peter