Re: piecewise integration
- To: mathgroup at smc.vnet.net
- Subject: [mg66961] Re: [mg66944] piecewise integration
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Mon, 5 Jun 2006 03:48:18 -0400 (EDT)
- Reply-to: hanlonr at cox.net
- Sender: owner-wri-mathgroup at wolfram.com
load[x_]=-9*10^3* DiracDelta[x]+Piecewise[{{x*10*(10^3/3),0â?¤xâ?¤3}},0]-6*10^3*DiracDelta[x-5]; If a bound of the integration is on a DiracDelta then Mathematica integrates that DiracDelta to 1/2 of its coefficient Integrate[DiracDelta[x],{x,0,1}] 1/2 Integrate[DiracDelta[x],{x,-1,0}] 1/2 Integrate[DiracDelta[x],{x,-1,1}] 1 This impacts both ends of your integral Integrate[#,{x,0,5}]&/@load[x] 7500 Integrate[#,{x,0,6}]&/@load[x] 4500 Integrate[#,{x,-1,5}]&/@load[x] 3000 Integrate[#,{x,-1,6}]&/@load[x] 0 Bob Hanlon ---- Chris Chiasson <chris at chiasson.name> wrote: > The Integrate result seems pretty weak. Is there any way to obtain a > more explicit exact answer besides manually converting the Piecewise > function to two UnitStep functions? Can the same be done if the final > limit of integration is a variable? > > in > > load[x_]=-9*10^3*DiracDelta[x]+Piecewise[{{x*10*(10^3/3),0<=x<=3}}]-6*10^3*DiracDelta[x-5]//InputForm > > out > > -6000*DiracDelta[-5 + x] - 9000*DiracDelta[x] + > Piecewise[{{(10000*x)/3, 0 <= x <= 3}}, 0] > > in > > Integrate[load[x],{x,0,5}]//InputForm > > out > > Integrate[InputForm[-6000*DiracDelta[-5 + x] - 9000*DiracDelta[x] + > Piecewise[{{(10000*x)/3, 0 <= x <= 3}}, 0]], {x, 0, 5}] > > -- > http://chris.chiasson.name/ > -- Bob Hanlon hanlonr at cox.net