Re: Problem with Limit
- To: mathgroup at smc.vnet.net
- Subject: [mg66958] Re: Problem with Limit
- From: ab_def at prontomail.com
- Date: Mon, 5 Jun 2006 03:48:09 -0400 (EDT)
- References: <200605311030.GAA13862@smc.vnet.net><e5mh78$kaa$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Andrzej Kozlowski wrote: > On 31 May 2006, at 19:30, Tony Harker wrote: > > > > > Can anybody explain why, for > > > > t =Sqrt[(k*m1 + k*m2 + m1*g + m2*g - > > (1/2)*Sqrt[4*(m1 + m2)^2*(k + g)^2 - 16*k*m1*m2*(k + 2*g)])/ > > (m1*m2)]/(1 + (k*m1 - k*m2 + m1*g - m2*g + > > (1/2)*Sqrt[4*(m1 + m2)^2*(k + g)^2 - 16*k*m1*m2*(k + > > 2*g)])^2/ > > (4*m1*m2*g^2)) + Sqrt[(k*m1 + k*m2 + m1*g + m2*g + > > (1/2)*Sqrt[4*(m1 + m2)^2*(k + g)^2 - 16*k*m1*m2*(k + 2*g)])/ > > (m1*m2)]/(1 + ((-k)*m1 + k*m2 - m1*g + m2*g + > > (1/2)*Sqrt[4*(m1 + m2)^2*(k + g)^2 - 16*k*m1*m2*(k + > > 2*g)])^2/ > > (4*m1*m2*g^2)); > > > > Limit[t, g -> 0] > > Limit[Together[t], g -> 0] > > > > both give zero, whereas > > > > Limit[Simplify[Together[t]], g -> 0] > > > > gives a non-zero result? This is with Mathe4matica 5.2. > > > > > > Dr A.H. Harker > > Department of Physics and Astronomy > > University College London > > Gower Street > > London > > WC1E 6BT > > > > > > > Mathematica 5.1 gives 0 in all of the above cases. Moreover: > > In[48]:= > t + O[g]^1 > > Out[48]= > O[g]^1 > > which agrees with it. > > Andrzej Kozlowski > Tokyo, Japan The problem is that at some stage in the computation we get a product like (a - Sqrt[a^2])*(a + Sqrt[a^2]). The first 'non-zero' term in the series for t will contain a hidden infinity: In[2]:= t + O[g]^3 // Simplify Out[2]= SeriesData[g, 0, {ComplexInfinity}, 2, 3, 1] A simpler example is 1/(A + (a + Sqrt[a^2])/b) + 1/(B + (a - Sqrt[a^2])/b) + O[b]^2 A useful trick is to take the series expansion of 1/t, let the zeros (hopefully) cancel, and then take the reciprocal of the series: In[3]:= 1/(1/t + O[g] // Simplify) Out[3]= SeriesData[g, 0, {-(m2*(Sqrt[k^2*(m1 - m2)^2]*(Sqrt[(-Sqrt[k^2*(m1 - m2)^2] + k*(m1 + m2))/(m1*m2)] - Sqrt[(Sqrt[k^2*(m1 - m2)^2] + k*(m1 + m2))/(m1*m2)]) - k*(m1 - m2)*(Sqrt[(-Sqrt[k^2*(m1 - m2)^2] + k*(m1 + m2))/(m1*m2)] + Sqrt[(Sqrt[k^2*(m1 - m2)^2] + k*(m1 + m2))/(m1*m2)]))^3)/(16*k^4*(m1 - m2)^3)}, 0, 1, 1] Maxim Rytin m.r at inbox.ru