Solving an equation

*To*: mathgroup at smc.vnet.net*Subject*: [mg67474] Solving an equation*From*: "masha" <mshunko at gmail.com>*Date*: Tue, 27 Jun 2006 03:14:48 -0400 (EDT)*Sender*: owner-wri-mathgroup at wolfram.com

Hi, I need to solve an equation (below), however, when I use Solve, I get an answer which I know cannot be correct (probably because Mathematica uses Inverse). Is their a way to get around this problem and get a true answer? \!\(Assuming[\ A > 0\ && \ \ B\ > A\ && \ b > 1\ && \(P\^b\ Q\)\/a\ < \ \ B\ && \ \(P\^b\ Q\)\/a \ > A\ && \ P\^b\ Q = a\ B && \ a\ > \ 0\ && \ Co\ > \ 0\ && \ Cu\ > 0\ && tr\ > 0\ && \ tm > 0\ && \ Q > 0 && \ P > 0\ && T > 0, Solve[\(P\^\(\(-1\) - b\)\ \((\(-2\)\ a\ B\ P\^\(1 + b\)\ Q + P\^\(2\ b\)\ \((P + b\ \((Co + Cu + P)\))\)\ Q\^2 - a\^2\ \(( A\^2\ b\ \((Co + T)\) + 2\ A\ \((\((\(-1\) + b)\)\ P - b\ Q\ T)\) + B\ \((\(-\((\(-2\) + B)\)\)\ P + b\ \((\(-2\)\ P + B\ \((Cu + P - T)\) + 2\ Q\ T)\))\))\))\)\)\/\(2\ a\ \((A - B)\)\) == 0, P]]\) Thank you, Masha