Re: Finding a shorter form for coplanar point in 3D space
- To: mathgroup at smc.vnet.net
- Subject: [mg65159] Re: Finding a shorter form for coplanar point in 3D space
- From: "Valeri Astanoff" <astanoff at yahoo.fr>
- Date: Wed, 15 Mar 2006 23:59:33 -0500 (EST)
- References: <dv9021$nil$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
This is the way I would do it : In[1]:= OA={xa,ya,0}; OB={xb,yb,zb}; OC={xc,yc,0}; AB=OB-OA; CA=OA-OC; AD=k AB; CD=CA+AD; OD=OA+AD; In[9]:=sol=First at Solve[CD.CD == l^2,k]; In[10]:=OD/.sol//Simplify Out[10]= {xa - ((xa - xb)*(xa^2 - xa*xb - xa*xc + xb*xc + ya^2 - ya*yb - ya*yc + yb*yc - (1/2)*Sqrt[4*(xa^2 + xb*xc - xa*(xb + xc) + (ya - yb)*(ya - yc))^2 - 4*(-l^2 + xa^2 - 2*xa*xc + xc^2 + ya^2 - 2*ya*yc + yc^2)*(xa^2 - 2*xa*xb + xb^2 + ya^2 - 2*ya*yb + yb^2 + zb^2)]))/(xa^2 - 2*xa*xb + xb^2 + ya^2 - 2*ya*yb + yb^2 + zb^2), ya - ((ya - yb)*(xa^2 - xa*xb - xa*xc + xb*xc + ya^2 - ya*yb - ya*yc + yb*yc - (1/2)*Sqrt[4*(xa^2 + xb*xc - xa*(xb + xc) + (ya - yb)*(ya - yc))^2 - 4*(-l^2 + xa^2 - 2*xa*xc + xc^2 + ya^2 - 2*ya*yc + yc^2)*(xa^2 - 2*xa*xb + xb^2 + ya^2 - 2*ya*yb + yb^2 + zb^2)]))/(xa^2 - 2*xa*xb + xb^2 + ya^2 - 2*ya*yb + yb^2 + zb^2), (zb*(xa^2 - xa*xb - xa*xc + xb*xc + ya^2 - ya*yb - ya*yc + yb*yc - (1/2)*Sqrt[4*(xa^2 + xb*xc - xa*(xb + xc) + (ya - yb)*(ya - yc))^2 - 4*(-l^2 + xa^2 - 2*xa*xc + xc^2 + ya^2 - 2*ya*yc + yc^2)*(xa^2 - 2*xa*xb + xb^2 + ya^2 - 2*ya*yb + yb^2 + zb^2)]))/(xa^2 - 2*xa*xb + xb^2 + ya^2 - 2*ya*yb + yb^2 + zb^2)} hth v.a.