Services & Resources / Wolfram Forums
MathGroup Archive
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2006

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Integration Bug

  • To: mathgroup at
  • Subject: [mg65259] Re: Integration Bug
  • From: "Valeri Astanoff" <astanoff at>
  • Date: Wed, 22 Mar 2006 06:13:51 -0500 (EST)
  • References: <dvj4s8$1j$>
  • Sender: owner-wri-mathgroup at

Hi Chris,

Seems to me that if you convert to Ei form,
care has to be taken of the argument sign :

In[1]:=toEiForm = {CosIntegral[x_ /; x \[Element] Reals] ->
     (1/2)*ExpIntegralEi[(-I)*x] + (1/2)*ExpIntegralEi[I*x] +
      I*Pi*(1 - UnitStep[x]), SinIntegral[x_ /; x \[Element] Reals] ->
     (1/2)*I*(ExpIntegralEi[(-I)*x] - ExpIntegralEi[I*x] +

In[2]:={CosIntegral[1],CosIntegral[1] /. toEiForm}
Out[2]={CosIntegral[1], ExpIntegralEi[-I]/2 + ExpIntegralEi[I]/2}

Out[3]={0.337404, 0.337404 + 0.*I}

In[4]:={CosIntegral[-1],CosIntegral[-1] /. toEiForm}
Out[4]={CosIntegral[-1], I*Pi + ExpIntegralEi[-I]/2 +

Out[5]={0.337404 + 3.14159*I, 0.337404 + 3.14159*I}


Valeri Astanoff

  • Prev by Date: Re: How to get the value of a counter
  • Next by Date: Re: Grouping similar indices together in an expression
  • Previous by thread: Integration Bug
  • Next by thread: Re: Integration Bug