Re: Listing the partitions of a set
- To: mathgroup at smc.vnet.net
- Subject: [mg65317] Re: [mg65282] Listing the partitions of a set
- From: "Adriano Pascoletti" <pascolet at dimi.uniud.it>
- Date: Sun, 26 Mar 2006 05:44:00 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
Richard Palmer wrote: > Is there a simple way to list the partitions of a set? For example, > there are 15 partitions on a set of 4 elements. {{{1, 2, 3, 4}}, {1, {2, 3,4}}, > > {{1, 3, 4}, 2}, {{1, 2, 4}, 3}, {{1, 2, 3}, 4}, {{1, 2}, {3, 4}}, > {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}, {1, 2, {3, 4}}, {1, 3, {2, 4}}, {1, 4, > {2,3}}, {2, 3, {1, 4}}, {2, 4, {1, 3}}, {3, 4, {1, 2}}, {1, 2, 3, 4}} > . Richard, Mathematica 5.1 introduced Subsets: In[1]:= Subsets[{1,2,3,4}]//Rest Out[1]= {{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{ 1,3,4},{2,3,4},{1,2,3,4}} One can get the same result with Distribute (an idea of I. Vardi, IIRC): In[2]:= Distribute[{{},{#}}&/@Range[4],List,List,List,Join]//Sort//Rest Out[2]= {{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{ 1,3,4},{2,3,4},{1,2,3,4}} Adriano Pascoletti