Re: want real solutions instead of complex ones
- To: mathgroup at smc.vnet.net
- Subject: [mg66521] Re: want real solutions instead of complex ones
- From: bghiggins at ucdavis.edu
- Date: Wed, 17 May 2006 03:31:11 -0400 (EDT)
- References: <e4biic$175$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Nabeel, Let the solutions be stored in the variable sol. Then use a DeleteCases to eliminate the complex roots using the following code: DeleteCases[sol, {Rule[x,Complex[_,_]],Rule[y,Complex[_,_]]},8] {{x->-2.33,y->5.4377},{x->-1.41347,y->2.03811},{x->-0.261794,y->2.31834}, {x->-0.275848,y->1.93711},{ x->2.21859,y->0.938096}, { x->2.03382,y->0.9278},{x->1.96041,y->1.08106}, {x->-0.675933,y->.405236},{x->1.51819,y->2.29567}, {x->0.635828,y->0.598477},{x->0.27623,y->0.513478}} Hope this helps, Cheers, Brian Nabeel Butt wrote: > Dear All, > I solve a system of 10 equations and get real solution along with > complex ones.Is there a way such that I get only real solutions satisfying > given constraints using NSolve. > > Find attached the file. > > regards, > > Nabeel Butt > > (************** Content-type: application/mathematica ************** > CreatedBy='Mathematica 5.2' > > Mathematica-Compatible Notebook > > This notebook can be used with any Mathematica-compatible > application, such as Mathematica, MathReader or Publicon. The data > for the notebook starts with the line containing stars above. > > To get the notebook into a Mathematica-compatible application, do > one of the following: > > * Save the data starting with the line of stars above into a file > with a name ending in .nb, then open the file inside the > application; > > * Copy the data starting with the line of stars above to the > clipboard, then use the Paste menu command inside the application. > > Data for notebooks contains only printable 7-bit ASCII and can be > sent directly in email or through ftp in text mode. Newlines can be > CR, LF or CRLF (Unix, Macintosh or MS-DOS style). > > NOTE: If you modify the data for this notebook not in a Mathematica- > compatible application, you must delete the line below containing > the word CacheID, otherwise Mathematica-compatible applications may > try to use invalid cache data. > > For more information on notebooks and Mathematica-compatible > applications, contact Wolfram Research: > web: http://www.wolfram.com > email: info at wolfram.com > phone: +1-217-398-0700 (U.S.) > > Notebook reader applications are available free of charge from > Wolfram Research. > *******************************************************************) > > (*CacheID: 232*) > > > (*NotebookFileLineBreakTest > NotebookFileLineBreakTest*) > (*NotebookOptionsPosition[ 10126, 222]*) > (*NotebookOutlinePosition[ 10768, 244]*) > (* CellTagsIndexPosition[ 10724, 240]*) > (*WindowFrame->Normal*) > > > > Notebook[{ > > Cell[CellGroupData[{ > Cell[BoxData[{ > \(Clear[x, y, a, b, c, d, e, f, g, h]\), "\[IndentingNewLine]", > \(\(f[x_, y_] := > 100*\((y - x^2)\)^2 + \((1 - x)\)^2;\)\), "\[IndentingNewLine]", > \(\(f1[x_, y_]\ = \ > D[100*\((y - x^2)\)^2 + \((1 - x)\)^2, > x];\)\), "\[IndentingNewLine]", > \(\(f2[x_, y_]\ = > D[100*\((y - x^2)\)^2 + \((1 - x)\)^2, > y];\)\), "\[IndentingNewLine]", > \(\(a\ = \ f1[1.5, 1.5];\)\), "\[IndentingNewLine]", > \(\(b\ = \ f2[1.5, 1.5];\)\), "\[IndentingNewLine]", > \(\(p[x_, y_] = > 1\/\(1 - y\) + 1\/\(x + 2 y - 4\) + > 1\/\(4 y - x - 1\);\)\), "\[IndentingNewLine]", > \(\(p1[x_, y_]\ = \ > D[1\/\(1 - y\) + 1\/\(x + 2 y - 4\) + 1\/\(4 y - x - 1\), > x];\)\), "\[IndentingNewLine]", > \(\(p2[x_, y_]\ = \ > D[1\/\(1 - y\) + 1\/\(x + 2 y - 4\) + 1\/\(4 y - x - 1\), > y];\)\), "\[IndentingNewLine]", > \(\(c\ = \ p1[1.5, 1.5];\)\), "\[IndentingNewLine]", > \(\(d\ = \ p2[1.5, 1.5];\)\), "\[IndentingNewLine]", > \(\(e\ = \ {{a, b}} . {{c}, {d}};\)\), "\[IndentingNewLine]", > \(\(f\ = \ {{c, d}} . {{c}, {d}};\)\), "\[IndentingNewLine]", > \(r\ = \ \(-\({{a, b}} . {{c}, {d}}\/{{c, > d}} . {{c}, {d}}\)\)\), "\[IndentingNewLine]", > \(\(\(h[x_, y_] := > 100*\((y - x^2)\)^2 + \((1 - x)\)^2 + > 32.8184*\((1\/\(1 - y\) + 1\/\(x + 2 y - 4\) + > 1\/\(4 y - x - 1\))\);\)\(\[IndentingNewLine]\) > \)\), "\[IndentingNewLine]", > \(\(\(h1[x_, y_] = > D[100*\((y - x^2)\)^2 + \((1 - x)\)^2 + > 32.8184*\((1\/\(1 - y\) + 1\/\(x + 2 y - 4\) + > 1\/\(4 y - x - 1\))\), x]\)\(\[IndentingNewLine]\) > \)\), "\[IndentingNewLine]", > \(h2[x_, y_] = > D[100*\((y - x^2)\)^2 + \((1 - x)\)^2 + > 32.8184*\((1\/\(1 - y\) + 1\/\(x + 2 y - 4\) + > 1\/\(4 y - x - 1\))\), > y]\[IndentingNewLine]\), "\[IndentingNewLine]", > \(NSolve[\(-2\)\ \((1 - x)\) - 400\ x\ \((\(-x^2\) + y)\) + > 32.8184*\((\(-\(1\/\((\(-4\) + x + 2\ y)\)^2\)\) + > 1\/\((\(-1\) - x + 4\ y)\)^2)\)\ \[Equal] \ 0 && > 200\ \((\(-\((x)\)^2\) + y)\) + > 32.8184*\ \((1\/\((1 - y)\)^2 - 2\/\((\(-4\) + x + 2\ y)\)^2 - > 4\/\((\(-1\) - x + 4\ y)\)^2)\)\ \[Equal] \ 0, {x, > y}]\)}], "Input"], > > Cell[BoxData[ > \({{32.8184040680618`}}\)], "Output"], > > Cell[BoxData[ > \(\(-2\)\ \((1 - x)\) - 400\ x\ \((\(-x\^2\) + y)\) + > 32.8184`\ \((\(-\(1\/\((\(-4\) + x + 2\ y)\)\^2\)\) + > 1\/\((\(-1\) - x + 4\ y)\)\^2)\)\)], "Output"], > > Cell[BoxData[ > \(200\ \((\(-x\^2\) + y)\) + > 32.8184`\ \((1\/\((1 - y)\)\^2 - 2\/\((\(-4\) + x + 2\ y)\)\^2 - > 4\/\((\(-1\) - x + 4\ y)\)\^2)\)\)], "Output"], > > Cell[BoxData[ > \({x \[Rule] 2.2185900920287023`, > y \[Rule] 0.938095512431111`}\)], "Output"], > > Cell[BoxData[ > \({{x \[Rule] \(-2.3300039158474948`\), > y \[Rule] > 5.437702408009029`}, {x \[Rule] \(-1.3080121812787795`\) + > 1.3189274376479279`\ \[ImaginaryI], > y \[Rule] \(-0.021135501562510876`\) - > 3.448843945185865`\ \[ImaginaryI]}, {x \[Rule] \ > \(-1.3080121812787795`\) - 1.3189274376479279`\ \[ImaginaryI], > y \[Rule] \(-0.021135501562510876`\) + > 3.448843945185865`\ \[ImaginaryI]}, {x \[Rule] \ > \(-1.413473641581122`\), > y \[Rule] > 2.038113944541813`}, {x \[Rule] \(\(3.016610621026707`\)\(\ > \[InvisibleSpace]\)\) + 0.17529083922050717`\ \[ImaginaryI], > y \[Rule] \(\(1.0028055240560971`\)\(\[InvisibleSpace]\)\) + > 0.02942470020512421`\ \[ImaginaryI]}, {x \[Rule] \ > \(\(3.016610621026707`\)\(\[InvisibleSpace]\)\) - > 0.17529083922050717`\ \[ImaginaryI], > y \[Rule] \(\(1.0028055240560971`\)\(\[InvisibleSpace]\)\) - > 0.02942470020512421`\ \[ImaginaryI]}, {x \[Rule] \ > \(\(3.002021155610634`\)\(\[InvisibleSpace]\)\) + > 0.061056545573892125`\ \[ImaginaryI], > y \[Rule] \(\(1.0009681663732772`\)\(\[InvisibleSpace]\)\) + > 0.029874542082381144`\ \[ImaginaryI]}, {x \[Rule] \ > \(\(3.002021155610634`\)\(\[InvisibleSpace]\)\) - > 0.061056545573892125`\ \[ImaginaryI], > y \[Rule] \(\(1.0009681663732772`\)\(\[InvisibleSpace]\)\) - > 0.029874542082381144`\ \[ImaginaryI]}, {x \[Rule] \ > \(-0.26179372754660113`\), > y \[Rule] > 2.3183385204212894`}, {x \[Rule] \(\(1.7426724070056736`\)\(\ > \[InvisibleSpace]\)\) - 1.1311994090477295`\ \[ImaginaryI], > y \[Rule] \(\(1.7605621392036186`\)\(\[InvisibleSpace]\)\) - > 3.9437915975175697`\ \[ImaginaryI]}, {x \[Rule] \ > \(\(1.7426724070056736`\)\(\[InvisibleSpace]\)\) + > 1.1311994090477295`\ \[ImaginaryI], > y \[Rule] \(\(1.7605621392036186`\)\(\[InvisibleSpace]\)\) + > 3.9437915975175697`\ \[ImaginaryI]}, {x \[Rule] \ > \(-0.27584848595520134`\), > y \[Rule] > 1.9371110378007257`}, {x \[Rule] \(\(2.4037452326588`\)\(\ > \[InvisibleSpace]\)\) + 0.04717248607553815`\ \[ImaginaryI], > y \[Rule] \(\(0.8486220559527325`\)\(\[InvisibleSpace]\)\) - > 0.024693334971704436`\ \[ImaginaryI]}, {x \[Rule] \ > \(\(2.4037452326588`\)\(\[InvisibleSpace]\)\) - > 0.04717248607553815`\ \[ImaginaryI], > y \[Rule] \(\(0.8486220559527325`\)\(\[InvisibleSpace]\)\) + > 0.024693334971704436`\ \[ImaginaryI]}, {x \[Rule] \ > \(\(2.2618824064519516`\)\(\[InvisibleSpace]\)\) + > 0.05540192878333497`\ \[ImaginaryI], > y \[Rule] \(\(0.8129374326537959`\)\(\[InvisibleSpace]\)\) - > 0.025761333389901043`\ \[ImaginaryI]}, {x \[Rule] \ > \(\(2.2618824064519516`\)\(\[InvisibleSpace]\)\) - > 0.05540192878333497`\ \[ImaginaryI], > y \[Rule] \(\(0.8129374326537959`\)\(\[InvisibleSpace]\)\) + > 0.025761333389901043`\ \[ImaginaryI]}, {x \[Rule] > 2.218590092050343`, > y \[Rule] 0.938095512444044`}, {x \[Rule] 2.0338209633766913`, > y \[Rule] 0.9277996749908699`}, {x \[Rule] 1.9604113947666808`, > y \[Rule] 1.0810644610825255`}, {x \[Rule] \(-0.6759326096756758`\), > y \[Rule] > 0.4052355182131105`}, {x \[Rule] \(-0.018384587735958014`\) + > 0.010882497228183506`\ \[ImaginaryI], > y \[Rule] \(\(1.0709002353096357`\)\(\[InvisibleSpace]\)\) - > 0.38887940149741124`\ \[ImaginaryI]}, {x \[Rule] \ > \(-0.018384587735958014`\) - 0.010882497228183506`\ \[ImaginaryI], > y \[Rule] \(\(1.0709002353096357`\)\(\[InvisibleSpace]\)\) + > 0.38887940149741124`\ \[ImaginaryI]}, {x \[Rule] \ > \(\(0.23155647108023092`\)\(\[InvisibleSpace]\)\) + > 0.7301095692582488`\ \[ImaginaryI], > y \[Rule] \(-0.4730247966511824`\) + > 0.33908560422426737`\ \[ImaginaryI]}, {x \[Rule] \ > \(\(0.23155647108023092`\)\(\[InvisibleSpace]\)\) - > 0.7301095692582488`\ \[ImaginaryI], > y \[Rule] \(-0.4730247966511824`\) - > 0.33908560422426737`\ \[ImaginaryI]}, {x \[Rule] \ > \(\(1.468860686921461`\)\(\[InvisibleSpace]\)\) + > 0.052407446381800143`\ \[ImaginaryI], > y \[Rule] \(\(1.14990789586539`\)\(\[InvisibleSpace]\)\) - > 0.014568422203746424`\ \[ImaginaryI]}, {x \[Rule] \ > \(\(1.468860686921461`\)\(\[InvisibleSpace]\)\) - > 0.052407446381800143`\ \[ImaginaryI], > y \[Rule] \(\(1.14990789586539`\)\(\[InvisibleSpace]\)\) + > 0.014568422203746424`\ \[ImaginaryI]}, {x \[Rule] > 1.5181877213040338`, > y \[Rule] > 2.2956733779000835`}, {x \[Rule] \(\(0.1477065626038482`\)\(\ > \[InvisibleSpace]\)\) + 0.02702054414757287`\ \[ImaginaryI], > y \[Rule] \(-0.012671023162213337`\) - > 0.21593683662093668`\ \[ImaginaryI]}, {x \[Rule] \ > \(\(0.1477065626038482`\)\(\[InvisibleSpace]\)\) - > 0.02702054414757287`\ \[ImaginaryI], > y \[Rule] \(-0.012671023162213337`\) + > 0.21593683662093668`\ \[ImaginaryI]}, {x \[Rule] > 0.6358277338359912`, > y \[Rule] 0.5984768668419583`}, {x \[Rule] 0.2762302599150268`, > y \[Rule] 0.5134777549844451`}}\)], "Output"] > }, Open ]], > > Cell[BoxData[ > \(\[AliasDelimiter]\)], "Input"] > }, > FrontEndVersion->"5.2 for Microsoft Windows", > ScreenRectangle->{{0, 800}, {0, 517}}, > WindowSize->{495, 487}, > WindowMargins->{{3, Automatic}, {Automatic, 0}} > ] > > (******************************************************************* > Cached data follows. If you edit this Notebook file directly, not > using Mathematica, you must remove the line containing CacheID at > the top of the file. The cache data will then be recreated when > you save this file from within Mathematica. > *******************************************************************) > > (*CellTagsOutline > CellTagsIndex->{} > *) > > (*CellTagsIndex > CellTagsIndex->{} > *) > > (*NotebookFileOutline > Notebook[{ > > Cell[CellGroupData[{ > Cell[1776, 53, 2397, 48, 798, "Input"], > Cell[4176, 103, 55, 1, 29, "Output"], > Cell[4234, 106, 192, 3, 64, "Output"], > Cell[4429, 111, 178, 3, 64, "Output"], > Cell[4610, 116, 102, 2, 29, "Output"], > Cell[4715, 120, 5342, 96, 580, "Output"] > }, Open ]], > Cell[10072, 219, 50, 1, 30, "Input"] > } > ] > *) > > > > (******************************************************************* > End of Mathematica Notebook file. > *******************************************************************)