Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2006
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2006

[Date Index] [Thread Index] [Author Index]

Search the Archive

ExactRootIsolation

  • To: mathgroup at smc.vnet.net
  • Subject: [mg70928] ExactRootIsolation
  • From: "dimitris" <dimmechan at yahoo.com>
  • Date: Thu, 2 Nov 2006 06:46:55 -0500 (EST)

I notice also that Root has an invisible third argument

Solve[x^7 + 4*x^3 + 2*x + 1 == 0];

lst = x /. %
{Root[1 + 2*#1 + 4*#1^3 + #1^7 & , 1], Root[1 + 2*#1 + 4*#1^3 + #1^7 &
, 2], Root[1 + 2*#1 + 4*#1^3 + #1^7 & , 3],
  Root[1 + 2*#1 + 4*#1^3 + #1^7 & , 4], Root[1 + 2*#1 + 4*#1^3 + #1^7 &
, 5], Root[1 + 2*#1 + 4*#1^3 + #1^7 & , 6],
  Root[1 + 2*#1 + 4*#1^3 + #1^7 & , 7]}

(#1[[1]] & ) /@ lst
{1 + 2*#1 + 4*#1^3 + #1^7 & , 1 + 2*#1 + 4*#1^3 + #1^7 & , 1 + 2*#1 +
4*#1^3 + #1^7 & , 1 + 2*#1 + 4*#1^3 + #1^7 & ,
  1 + 2*#1 + 4*#1^3 + #1^7 & , 1 + 2*#1 + 4*#1^3 + #1^7 & , 1 + 2*#1 +
4*#1^3 + #1^7 & }

(#1[[2]] & ) /@ lst
{1, 2, 3, 4, 5, 6, 7}

(#1[[3]] & ) /@ lst
{0, 0, 0, 0, 0, 0, 0}

What is this third agument? 

Thanks


  • Prev by Date: ExactRootIsolation
  • Next by Date: Factor.....
  • Previous by thread: Re: ExactRootIsolation
  • Next by thread: Factor.....