[Date Index]
[Thread Index]
[Author Index]
Re: animation question
*To*: mathgroup at smc.vnet.net
*Subject*: [mg71208] Re: [mg71153] animation question
*From*: Bob Hanlon <hanlonr at cox.net>
*Date*: Fri, 10 Nov 2006 06:38:14 -0500 (EST)
*Reply-to*: hanlonr at cox.net
fr[n_]:=Plot[
(Sqrt[7*x^4+6*x+5]-Sqrt[7*x^4+3*x+3])*
Sqrt[63*x^2-5*x+20],{x,0,n},
PlotRange->{{0,10},{2,6.5}},
Frame->{True,True,False,False},
Epilog->{Red,Line[{{0,4.5},{10,4.5}}]}];
Table[fr[n],{n,1,10,0.1}];
SelectionMove[EvaluationNotebook[],All,GeneratedCell];
FrontEndTokenExecute["CellGroup"];
FrontEndTokenExecute["OpenCloseGroup"];
Bob Hanlon
---- dimitris <dimmechan at yahoo.com> wrote:
> Consider the simple animation
>
> fr[n_] := Show[Plot[(Sqrt[7*x^4 + 6*x + 5] - Sqrt[7*x^4 + 3*x +
> 3])*Sqrt[63*x^2 - 5*x + 20], {x, 0, n},
> PlotRange -> {{0, 10}, {2, 6.5}}, Frame -> {True, True, False,
> False}], Graphics[{Red, Line[{{0, 4.5}, {10, 4.5}}]}]]
>
> Table[fr[n], {n, 1, 10, 0.1}];
> SelectionMove[EvaluationNotebook[], All, GeneratedCell];
> FrontEndTokenExecute["CellGroup"]
> FrontEndTokenExecute["OpenCloseGroup"]
>
> How is possible to hold the red line (which has the meaning of the
> limit as x->infinity; try
> Limit[(Sqrt[7*x^4 + 6*x + 5] - Sqrt[7*x^4 + 3*x + 3])*Sqrt[63*x^2 - 5*x
> + 20], x -> Infinity])
> fixed (i.e. not "animated")?
>
> I think where I have inserted the graphic primitive I can't avoid this.
> But I can't think something other.
>
> Regards
> Dimitris
>
Prev by Date:
**2 dimension Newton Raphson**
Next by Date:
**Slow Integrate[] on standard integral**
Previous by thread:
**Re: animation question**
Next by thread:
**Re: animation question**
| |