Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2006
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2006

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: animation question

  • To: mathgroup at smc.vnet.net
  • Subject: [mg71252] Re: animation question
  • From: "dimitris" <dimmechan at yahoo.com>
  • Date: Sun, 12 Nov 2006 06:47:33 -0500 (EST)
  • References: <eiurmk$ggr$1@smc.vnet.net><ej1qmt$fct$1@smc.vnet.net>

Thanks for everyone reply!

Regards
Dimitris

ben wrote:
> Dear Dimitris
>
> Use e.g. Prolog
>
> fr[n_] := Show[
>     Plot[
>       (Sqrt[7*x^4 + 6*x + 5] - Sqrt[7*x^4 + 3*x + 3])*
>         Sqrt[63*x^2 - 5*x + 20], {x, 0, n},
>       Prolog -> {
>           {
>             Red,
>             Line[
>               {
>                 {0, 4.5}, {10, 4.5}
>                 }
>               ]
>             }
>           },
>       PlotRange -> {{0, 10}, {2, 6.5}},
>       Frame -> {True, True, False, False}]]
>
> Table[fr[n], {n, 1, 10, 1}];
> SelectionMove[EvaluationNotebook[], All, GeneratedCell];
> FrontEndTokenExecute["CellGroup"]
> FrontEndTokenExecute["OpenCloseGroup"]
>
> Bye
> Ben
>
> Personally, I prefer to save the animation
> to a file, saves me some trouble with
> complex animations
>
> Export[Table[frame[i],{i,n},"movie.gif"];
> Run["xanim movie.gif"];
>
> dimitris schrieb:
>
> > Consider the simple animation
> >
> > fr[n_] := Show[Plot[(Sqrt[7*x^4 + 6*x + 5] - Sqrt[7*x^4 + 3*x +
> > 3])*Sqrt[63*x^2 - 5*x + 20], {x, 0, n},
> >     PlotRange -> {{0, 10}, {2, 6.5}}, Frame -> {True, True, False,
> > False}], Graphics[{Red, Line[{{0, 4.5}, {10, 4.5}}]}]]
> >
> > Table[fr[n], {n, 1, 10, 0.1}];
> > SelectionMove[EvaluationNotebook[], All, GeneratedCell];
> > FrontEndTokenExecute["CellGroup"]
> > FrontEndTokenExecute["OpenCloseGroup"]
> >
> > How is possible to hold the red line (which has the meaning of the
> > limit as x->infinity; try
> > Limit[(Sqrt[7*x^4 + 6*x + 5] - Sqrt[7*x^4 + 3*x + 3])*Sqrt[63*x^2 - 5*x
> > + 20], x -> Infinity])
> > fixed (i.e. not "animated")?
> >
> > I think where I have inserted the graphic primitive I can't avoid this.
> > But I can't think something other.
> > 
> > Regards
> > Dimitris


  • Prev by Date: Re: are there any methods of figuring out how "large" a piece of typeset textual data will be?
  • Next by Date: Re: Efficiency of repeatedly appending to a List
  • Previous by thread: Re: animation question
  • Next by thread: animation question