[Fwd: tripartite K(n) linked graphs as polynomials]
- To: mathgroup at smc.vnet.net
- Subject: [mg71331] [Fwd: tripartite K(n) linked graphs as polynomials]
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Wed, 15 Nov 2006 06:43:32 -0500 (EST)
Using graph theory to get higher level linked structures, I get these quantum Heisenberg algebra like polynomials. The resolution of the graph root spectrum is secular equation like in quantum mechanical terms. The K(2)*K(2)*K(2) tripartite is: {{0, 1, 1, 0, 1, 0}, {1, 0, 0, 1, 0, 1}, {1, 0, 0, 1, 1, 0}, {0, 1, 1, 0, 0, 1}, {1, 0, 1, 0, 0, 1}, {0, 1, 0, 1, 1, 0}} with Characteristic Polynomial: 12 x^2 - 4 x^3 - 9x^4 + x^6 root / graph spectrum is: ({{x -> -2 }, {x ->-2}, {x -> 0.`}, {x -> 0.`}, {x -> 1.`}, {x -> 3.`}} The K(4)*K(4)*K(4) tripartite is: ( three tetrahedrons linked together) {{0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0}, {1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0}, {1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0}, {1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0}, {0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0}, {0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0}, {0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1}, {0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1}, {0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1}, {0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0}} with characteristic polynomial: 1280 - 1536 x - 2304 x^2 + 2432 x^3 + 2016x^4 - 1440 x^5 - 1008 x^6 + 360x^7 + 261x^8 - 32 x^9 - 30 x^10 + x^12 (-5 + x)(-2 + x)^2(-1+ x)^3(2 + x)^6 The graph spectrum/ roots are: {{x -> -2.}, {x -> -2.}, {x -> -2.}, {x -> -2.}, {x -> -2.}, {x -> -2.}, {x -> 1.}, {x -> 1.}, {x -> 1.}, {x -> 2.}, {x -> 2.}, {x -> 5.}} NSolve[CharacteristicPolynomial[An[12], x] == 0, x] If quarks behaves as quaternion like Leptons in Hadrons with Gluon bondings as the graph edges, this would be a model for a proton with 6 Regge trajectory Pions (Pi mesons) at the -2 levels. %I A000001 %S A000001 1, 1, -1, 0, -2, 1, 2, 3, 0, -1, 0, -4, -5, 0, 1, 0, 0, 0, 6, 0, -1, 0, 0, 12, -4, -9, 0, 1, 0, 12, -10, -24, 8, 12, 0, -1, 1, 4, -15, -8, 35, -4, -14, 0, 1, 64, -144, 0, 168, -36, -81, 12, 18, 0, -1, -128, 96, 320, -200, -284, 116, 121, -20, -22, 0, 1, 0, 40, -52, -236, 170, 354, -112, -158, 18, 25, 0, -1, 1280, -1536, -2304, 2432, 2016, -1440, -1008, 360, 261, -32, -30, 0, 1, -1920, -256, 5920, 1152, -6536, -1968, 3222, 1320, -666, -348, 46, 35, 0, -1, 3, 128, -97, -1440, 315, 3972, 588, -3664, -1500, 792, 429, -48, -39, 0, 1, 13824, -11520, -38400, 20480, 48960, -10080, -33440, -2160, 11430, 2955, -1548, -615, 70, 45, 0, -1, -18432, -9216, 67328, 39936, -89344, -67968, 49824, 53696, -6456, -19044, -3321, 2368, 771, -92, -51, 0, 1, 0, 336, -156, -5430, -130, 23653, 9156, -37544, -26782, 17840, 22022, 3402, -2860, -917, 100, 56, 0, -1, 114688, -73728, -414720, 132096, 679680, 0, -600960, -167040, 272160, 149920, -43236, -48924, -5565, 4608, 1215, -132, -63, 0, 1, -143360, -101376, 611840, 517120, -966656, -1060480, 623680, 1072960, -10960, -531820, -178730, 98512, 71660, 5240, -6398, -1465, 164, 70, 0, -1, 5, 684, -197, -15888, -2750, 99176, 53102, -241520, -215229, 216140, 318197, 11360, -154882, -82136, -4395, 7648, 1700, -180, -76, 0, 1 %N A000001 tripartite straight linked graphs as matrices producing polynomials and their triangular sequence: Matrix model (A120658 ): M(n,m,9)={{0, 1, 1, 1, 0, 0, 1, 0, 0}, {1, 0, 1, 0, 1, 0, 0, 1, 0}, {1, 1, 0, 0, 0, 1, 0, 0, 1}, {1, 0, 0, 0, 1, 1, 1, 0, 0}, {0, 1, 0, 1, 0, 1, 0, 1, 0}, {0, 0, 1, 1, 1, 0, 0, 0, 1}, {1, 0, 0, 1, 0, 0, 0, 1, 1}, {0, 1, 0, 0, 1, 0, 1, 0, 1}, {0, 0, 1, 0, 0, 1, 1, 1, 0}} This Model is striaght hyper-connections between 3 generalized K(n) complete graphs. %C A000001 The Large roots count: Table[x /. NSolve[CharacteristicPolynomial[An[d], x] == 0, x][[d]], {d, 2, 20}] {2.`, 2.`, 2.5615528128088303`, 2.449489742783178`, 3.`, 3.4880262221757476`, 3.552081133571793`, 3.9999999995851967`, 4.4586794310874645`, 4.597458186284443`, 5.`, 5.444061970030621`, 5.6239192478734195`, 5.999999274025329`, 6.43569176446824`, 6.641461869097823`, 6.999999682622629`, 7.415010662974701`, 7.654010866523878`} %D A000001 F. Chung and R. L. Graham,Erdos on Graphs,AK Peters Ltd., Ma,1998 %D A000001 Weisstein, Eric W. "Complete Graph." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/CompleteGraph.html %F A000001 m(n,m,d)=If[m == n + Floor[d/3] , 1, If[m == n - Floor[d/3], 1,If[m == n + Floor[2*d/3] , 1, If[m == n - Floor[2*d/3],1, If[ n <= Floor[d/3] && m <= Floor[d/3] && (n < m || n > m), 1, If[ n > Floor[d/3] && n < Floor[2*d/3] + 1 && m > Floor[d/3] && m < Floor[2*d/3] + 1 && (n < m ||n > m), 1, If[ n > Floor[2*d/3] && m > Floor[2*d/3] && (n < m || n > m), 1, If[n == m, 0, 0]]]]]]]] %e A000001 Triangular sequence: {1}, {1, -1}, {0, -2, 1}, {2, 3, 0, -1}, {0, -4, -5, 0, 1}, {0, 0, 0, 6,0, -1}, {0, 0, 12, -4, -9, 0, 1}, {0, 12, -10, -24, 8, 12, 0, -1}, {1, 4, -15, -8, 35, -4, -14, 0, 1}, {64, -144, 0, 168, -36, -81, 12, 18, 0, -1}, {-128, 96, 320, -200, -284, 116, 121, -20, -22, 0, 1}, {0, 40, -52, -236,170, 354, -112, -158, 18,25, 0, -1}, {1280, -1536, -2304, 2432, 2016, -1440, -1008, 360, 261, -32, -30, 0, 1}, {-1920, -256, 5920, 1152, -6536, -1968, 3222, 1320, -666, -348, 46, 35, 0, -1} Polynomials: 1 1 - x, -2 x + x^2, 2 + 3 x - x^3, -4 x - 5 x^2 + x^4, 6 x^3 - x^5, 12 x^2 - 4 x^3 - 9 x^4 + x^6, 12 x - 10 x^2 - 24 x^3 + 8 x^4 + 12 x^5 - x^7, 1 + 4 x - 15 x^2 - 8 x^3 + 35 x^4 - 4 x^5 - 14 x^6 + x^8, 64 - 144 x + 168 x^3 - 36 x^4 - 81 x^5 + 12 x^6 + 18 x^7 - x^9 %t A000001 M[n_, m_, d_] = If[ m == n + Floor[d/3] , 1, If[m == n - Floor[d/3], 1, If[m == n +Floor[2*d/3] , 1, If[m == n - Floor[2*d/3], 1, If[ n <= Floor[d/3] && m <= Floor[d/3] && (n < m || n > m), 1, If[ n > Floor[d/3] && n < Floor[2*d/3] + 1 && m > Floor[d/3] && m <Floor[2*d/3] + 1 && (n < m || n > m), 1, If[ n > Floor[2*d/3] && m > Floor[2*d/3] && (n < m || n > m), 1, If[n == m, 0, 0]]]]]]]]; An[d_] := Table[M[n, m, d], {n, 1, d}, {m, 1, d}]; Join[An[1], Table[CoefficientList[CharacteristicPolynomial[An[d], x], x], {d, 1, 20}]]; Flatten[%] %Y A000001 Cf. A120658 %O A000001 1 %K A000001 ,nonn, %A A000001 Roger Bagula and Gary Adamson (rlbagula at sbcglobal.net), Nov 12 2006