Re: Numerical Integration
- To: mathgroup at smc.vnet.net
- Subject: [mg71503] Re: Numerical Integration
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Mon, 20 Nov 2006 18:12:06 -0500 (EST)
- References: <ejrn8h$9a4$1@smc.vnet.net><ejs36f$906$1@smc.vnet.net>
Dear David, Thanks a lot for your nice solution. Here is another along the same lines. h[x_] := Tan[BesselJ[0, x]] Needs["NumericalMath`BesselZeros`"] lst = BesselJZeros[0, 10]; lst[[0]] = 0; f[i_] := NIntegrate[h[x], {x, lst[[i]], lst[[i + 1]]}] SequenceLimit[FoldList[Plus, 0, Table[f[i], {i, 0, 9}]]] 1.45451 Best Regards Dimitris Peter Pein wrote: > dimitris schrieb: > > Dear All, > > > > I have one question about the numerical integration of one function. > > > > $VersionNumber > > 5.2 > > > ... > > h[x_] := Tan[BesselJ[0, x]] > > > > Plot[h[x], {x, 0, 40}, PlotPoints -> 100, Axes -> None, Frame -> {True, > > True, False, False}, PlotStyle -> AbsoluteThickness[2]] > > > > Limit[h[x], x -> Infinity] > > 0 > > > > I try hard to find any proper settings for getting a numerical > > estimation of its integral > > over {0,Infinity} but I can't succeed. > > > > Any help will be greatly appreciate. > > > > Dimitris > > > > Hi Dimitris, > > I tried it this way: > > In[1]:= > Needs["NumericalMath`BesselZeros`"]; > h[x_] := Tan[BesselJ[0, x]]; > t0 = SessionTime[]; > bzlist = NestList[BesselJZerosInterval[0, {1, 2}*Last[#1] + {-1/10, 1/10}] & , > Flatten[{0, BesselJZeros[0, 2]}], 9]; > v0 = (NIntegrate[h[x], Evaluate[Flatten[{x, #1}]]] & ) /@ bzlist; > SequenceLimit[Rest[FoldList[Plus, 0, v0]]] > (SessionTime[] - t0)*seconds > Out[6]= > 1.4545133229307878 > Out[7]= > 1.75*seconds > > The displayed result (1.45451) does not change any more when increasing the > number of intervals from 9 to 10 or more. > > Peter