Re: symbolic solution of ODE
- To: mathgroup at smc.vnet.net
- Subject: [mg71620] Re: symbolic solution of ODE
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Sat, 25 Nov 2006 05:36:59 -0500 (EST)
- References: <ejtdfo$iva$1@smc.vnet.net><ejuqn8$i0b$1@smc.vnet.net>
Further on my previous post... Copy paste the following in a notebook. sol = DSolve[Derivative[4][w][z] - 2*t*Derivative[2][w][z] + k*w[z] == 0, w[z], z, GeneratedParameters -> (Subscript[c, #1] & )] derfun = Flatten[(D[sol, {z, #1}] & ) /@ Range[0, 4]]; FullSimplify[Derivative[4][w][z] - 2*t*Derivative[2][w][z] + k*w[z] == 0 //. %] sol = w[z] /. FullSimplify[sol /. -k + t^2 -> -m^2, m > 0][[1]] eq1 = Sqrt[(-I)*m + t] == a + I*b ComplexExpand[(#1^2 & ) /@ eq1] (ComplexExpand[Re[#1]] & ) /@ % (ComplexExpand[Im[#1]] & ) /@ %% FullSimplify[Solve[% && %%, {a, b}]] %[[1]] f = a + I*b /. % FullSimplify[f^2 == (-I)*m + t] eq2 = Sqrt[I*m + t] == c + I*d ComplexExpand[(#1^2 & ) /@ eq2] (ComplexExpand[Re[#1]] & ) /@ % (ComplexExpand[Im[#1]] & ) /@ %% FullSimplify[Solve[% && %%, {c, d}]] %[[2]] g = c + I*d /. % FullSimplify[g^2 == I*m + t] dat = {Random[], Random[]} Thread[{m, t} -> dat] N[Sqrt[I*m + t] - Sqrt[(-I)*m + t] /. %] f - g /. %% sol2 = sol /. {Sqrt[(-I)*m + t] -> f, Sqrt[I*m + t] -> g} sol3 = sol2 /. {m/(Sqrt[2]*Sqrt[-t - Sqrt[m^2 + t^2]]) -> k, Sqrt[-t - Sqrt[m^2 + t^2]]/Sqrt[2] -> n} Regards Dimitris dimitris wrote: > Hello. > > First the solution of your ODE. > > sol = DSolve[Derivative[4][w][z] - 2*t*Derivative[2][w][z] + k*w[z] == > 0, w[z], z, GeneratedParameters -> (Subscript[c, #1] & )] > > Let's check it. > > derfun = Flatten[(D[sol, {z, #1}] & ) /@ Range[0, 4]]; > > FullSimplify[Derivative[4][w][z] - 2*t*Derivative[2][w][z] + k*w[z] == > 0 //. %] > True > > >...imposing the condition "t^2 < k"... > > Did you mean something like the following? > > w[z] /. FullSimplify[sol /. -k + t^2 -> -m^2, m > 0][[1]] > > Dimitris > > visbuga at purdue.edu wrote: > > Hello, > > > > I like to solve the ODE > > DSolve[w''''[z] - 2*t*w''[z] + k*w[z] == 0, w[z], z] > > by imposing the condition "t^2 < k" on constants in the eqn.In fact, solution > > of this homogenous ODE is known, but I want to see the result of mathematica > > to use in a complex eqn. Thank you. > > > > VV