[Date Index]
[Thread Index]
[Author Index]
Re: Simplify question
*To*: mathgroup at smc.vnet.net
*Subject*: [mg71725] Re: [mg71655] Simplify question
*From*: Andrzej Kozlowski <akoz at mimuw.edu.pl>
*Date*: Mon, 27 Nov 2006 04:05:09 -0500 (EST)
*References*: <200611260848.DAA14451@smc.vnet.net>
On 26 Nov 2006, at 17:48, dimitris wrote:
> The following list of expressions was obtained by following the steps
> of Tartaglia's solution of the cubic equation with Mathematica.
>
> lstcub = {{((-1)^(1/3)*Q)/(R - Sqrt[Q^3 + R^2])^(1/3) + (-1)^(2/3)*
> (R -
> Sqrt[Q^3 + R^2])^(1/3),
> -(Q/(R - Sqrt[Q^3 + R^2])^(1/3)) + (R - Sqrt[Q^3 + R^2])^(1/3),
> -(((-1)^(2/3)*Q)/(R - Sqrt[Q^3 + R^2])^(1/3)) -
> (-1)^(1/3)*(R - Sqrt[Q^3 + R^2])^(1/3)}, {-(Q/(R + Sqrt[Q^3 +
> R^2])^(1/3)) + (R + Sqrt[Q^3 + R^2])^(1/3),
> ((-1)^(1/3)*Q)/(R + Sqrt[Q^3 + R^2])^(1/3) + (-1)^(2/3)*(R +
> Sqrt[Q^3 + R^2])^(1/3),
> -(((-1)^(2/3)*Q)/(R + Sqrt[Q^3 + R^2])^(1/3)) - (-1)^(1/3)*(R +
> Sqrt[Q^3 + R^2])^(1/3)}};
>
> TableForm[%]//TraditionalForm
>
> Although the solution of the reduced cubic equation can be obtained
> making a tricky observation
>
> (see e.g. Leonard E. (Leonard Eugene) Dickson b. 1874. (page 32) ,
> Elementary theory of equations. 1914.
> available online at
> http://mathbooks.library.cornell.edu:8085/Dienst?
> verb=Display&protocol=CGM&ver=1.0&identifier=cul.math/01460001"
>
> target=_blank
>> http://mathbooks.library.cornell.edu:8085/Dienst?
>> verb=Display&protocol=CGM&ver=1.0&identifier=cul.math/01460001)
>
> so what I ask don't play any important role in the solution procedure,
> I wonder if Mathematica can verify the equalities
>
> MapThread[Equal, lstcub]
> {((-1)^(1/3)*Q)/(R - Sqrt[Q^3 + R^2])^(1/3) + (-1)^(2/3)*(R - Sqrt[Q^3
> + R^2])^(1/3) ==
> -(Q/(R + Sqrt[Q^3 + R^2])^(1/3)) + (R + Sqrt[Q^3 + R^2])^(1/3),
> -(Q/(R - Sqrt[Q^3 + R^2])^(1/3)) + (R - Sqrt[Q^3 + R^2])^(1/3) ==
> ((-1)^(1/3)*Q)/(R + Sqrt[Q^3 + R^2])^(1/3) +
> (-1)^(2/3)*(R + Sqrt[Q^3 + R^2])^(1/3), -(((-1)^(2/3)*Q)/(R -
> Sqrt[Q^3 + R^2])^(1/3)) -
> (-1)^(1/3)*(R - Sqrt[Q^3 + R^2])^(1/3) == -(((-1)^(2/3)*Q)/(R +
> Sqrt[Q^3 + R^2])^(1/3)) -
> (-1)^(1/3)*(R + Sqrt[Q^3 + R^2])^(1/3)}
>
> which can be justified in view of the results
>
> Table[lstcub /. {R -> Random[], Q -> Random[]}, {5}] // Chop
>
> Thanks a lot for any response.
>
> Dimitris
>
It clearly can't because:
In[1]:=
FindInstance[((-1)^(1/3)*Q)/(R - Sqrt[Q^3 + R^2])^(1/3) +
(-1)^(2/3)*(R - Sqrt[Q^3 + R^2])^(1/3) != -(Q/(R + Sqrt[Q^3 +
R^2])^(1/3)) +
(R + Sqrt[Q^3 + R^2])^(1/3), {R, Q}]
Out[1]=
{{R -> -7 + (15*I)/2, Q -> 18/5 + (34*I)/5}}
etc,
Andrzej Kozlowski
Tokyo, Japan
Prev by Date:
**RE: Re: a technique for options**
Next by Date:
**Re: Re: Limit of Infinitely Nested Expression (4.0**
Previous by thread:
**Simplify question**
Next by thread:
**Re: Simplify question**
| |