Re: variance of product of random variables
- To: mathgroup at smc.vnet.net
- Subject: [mg70147] Re: variance of product of random variables
- From: "Ray Koopman" <koopman at sfu.ca>
- Date: Thu, 5 Oct 2006 03:33:15 -0400 (EDT)
- References: <efq5iv$2ap$1@smc.vnet.net>
Frank Brand wrote: > Dear Mathematica friends, > > is there a hint to a work done with Mathematica calculating the variance of a > product of two random variables that are normally distributed? > > Thanks in advance > Frank Here is a step-by-step derivation of the variance of a product p = x*y for bivariate normal {x,y} with mean vector = {Mx,My} and covariance matrix = {{Vx,Cxy},{Cxy,Vy}}. Expectations are implemented manually using /. replacements. The results are general except where noted. In[1]:= p = (Mx + X)*(My + Y) (* X = x - Mx, Y = y - My *) Out[1]= (Mx + X)*(My + Y) In[2]:= Expand[p] % /. X*Y -> Cxy Mp = % /. {X -> 0, Y -> 0} Out[2]= Mx*My + My*X + Mx*Y + X*Y Out[3]= Cxy + Mx*My + My*X + Mx*Y Out[4]= Cxy + Mx*My In[5]:= Expand[p^2] % /. X^2*Y^2 -> Vx*Vy + 2*Cxy^2 (* assumes normality *) % /. {X^2*Y -> 0, X*Y^2 -> 0} (* assumes normality *) % /. {X^2 -> Vx, Y^2 -> Vy, X*Y -> Cxy} Mpp = % /. {X -> 0, Y -> 0} Out[5]= Mx^2*My^2 + 2*Mx*My^2*X + My^2*X^2 + 2*Mx^2*My*Y + 4*Mx*My*X*Y + 2*My*X^2*Y + Mx^2*Y^2 + 2*Mx*X*Y^2 + X^2*Y^2 Out[6]= 2*Cxy^2 + Mx^2*My^2 + Vx*Vy + 2*Mx*My^2*X + My^2*X^2 + 2*Mx^2*My*Y + 4*Mx*My*X*Y + 2*My*X^2*Y + Mx^2*Y^2 + 2*Mx*X*Y^2 Out[7]= 2*Cxy^2 + Mx^2*My^2 + Vx*Vy + 2*Mx*My^2*X + My^2*X^2 + 2*Mx^2*My*Y + 4*Mx*My*X*Y + Mx^2*Y^2 Out[8]= 2*Cxy^2 + 4*Cxy*Mx*My + Mx^2*My^2 + My^2*Vx + Mx^2*Vy + Vx*Vy + 2*Mx*My^2*X + 2*Mx^2*My*Y Out[9]= 2*Cxy^2 + 4*Cxy*Mx*My + Mx^2*My^2 + My^2*Vx + Mx^2*Vy + Vx*Vy In[10]:= Vp = Expand[Mpp - Mp^2] Out[10]= Cxy^2 + 2*Cxy*Mx*My + My^2*Vx + Mx^2*Vy + Vx*Vy That's the answer. There are various equivalent expressions. One such, in terms of the raw moments, is In[11]:= Simplify[ Vp == Mxy^2 + Mxx*Myy - 2*Mx^2*My^2 /. {Mxy -> Cxy + Mx*My, Mxx -> Vx + Mx^2, Myy -> Vy + My^2}] Out[11]= True