Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2006
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2006

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: FoourierTransform of a function defined in sections

  • To: mathgroup at smc.vnet.net
  • Subject: [mg70191] Re: [mg70176] FoourierTransform of a function defined in sections
  • From: Bob Hanlon <hanlonr at cox.net>
  • Date: Sat, 7 Oct 2006 07:07:05 -0400 (EDT)
  • Reply-to: hanlonr at cox.net

Needs["Graphics`"];

g[x_]= (1/2)*(Sign[Pi-x]+Sign[x+Pi])*Sin[x]^2;

Plot[{Sin[x]^2,g[x]},{x,-3Pi,3Pi},
    PlotStyle->{Red,{AbsoluteThickness[2],Blue}},
    Frame->True,Axes->False,
    FrameTicks->{PiScale,Automatic}];

f[p_]=FourierTransform[g[x],x,p]

-((2*Sqrt[2/Pi]*Sin[p*Pi])/(p^3 - 4*p))

g[x]==InverseFourierTransform[f[p],p,x]//Simplify

True

Alternatively you could use UnitStep

g2[x_]=(UnitStep[x+Pi]-UnitStep[x-Pi])Sin[x]^2;

f[p]==FourierTransform[g2[x],x,p]

True

Or, Piecewise

g3[x_]:=Piecewise[{{Sin[x]^2,-Pi<x<Pi}}];

f[p]==FourierTransform[g3[x],x,p]

True


Bob Hanlon

---- Eckhard Schlemm <e.schlemm at hotmail.de> wrote: 
> Hello,
> 
> I want Mathematica to calculate the FourierTransform of a function which is
> defined by Sin[x]^2 for Abs[x]<PI and zero else. I tried and defined the
> function g as follows:
> 
> g[x_]:=If[Abs[x]>PI,0,Sin[x]^2];
> 
> That works fine. But if I have mathematica try to determine the
> FourierTransform by
> 
> FourierTransform[g[x],x,p]
> 
> I always get the error that the recursion limit and the iteration limit were
> exceeded...
> 
> what am I'm doing wrong?
> 
> Any help is appreciated
> 
> thanks
> 
> Eckhard
> 
> --
> _________________________
> Ludwig Schlemm
> Tel: +49 (0) 160 91617114
> LudwigSchlemm at hotmail.com
> 
> 

--

Bob Hanlon
hanlonr at cox.net



  • Prev by Date: Troubles with Integrate
  • Next by Date: Re: FoourierTransform of a function defined in sections
  • Previous by thread: Re: FoourierTransform of a function defined in sections
  • Next by thread: Re: FoourierTransform of a function defined in sections