Re: FoourierTransform of a function defined in sections
- To: mathgroup at smc.vnet.net
- Subject: [mg70191] Re: [mg70176] FoourierTransform of a function defined in sections
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Sat, 7 Oct 2006 07:07:05 -0400 (EDT)
- Reply-to: hanlonr at cox.net
Needs["Graphics`"]; g[x_]= (1/2)*(Sign[Pi-x]+Sign[x+Pi])*Sin[x]^2; Plot[{Sin[x]^2,g[x]},{x,-3Pi,3Pi}, PlotStyle->{Red,{AbsoluteThickness[2],Blue}}, Frame->True,Axes->False, FrameTicks->{PiScale,Automatic}]; f[p_]=FourierTransform[g[x],x,p] -((2*Sqrt[2/Pi]*Sin[p*Pi])/(p^3 - 4*p)) g[x]==InverseFourierTransform[f[p],p,x]//Simplify True Alternatively you could use UnitStep g2[x_]=(UnitStep[x+Pi]-UnitStep[x-Pi])Sin[x]^2; f[p]==FourierTransform[g2[x],x,p] True Or, Piecewise g3[x_]:=Piecewise[{{Sin[x]^2,-Pi<x<Pi}}]; f[p]==FourierTransform[g3[x],x,p] True Bob Hanlon ---- Eckhard Schlemm <e.schlemm at hotmail.de> wrote: > Hello, > > I want Mathematica to calculate the FourierTransform of a function which is > defined by Sin[x]^2 for Abs[x]<PI and zero else. I tried and defined the > function g as follows: > > g[x_]:=If[Abs[x]>PI,0,Sin[x]^2]; > > That works fine. But if I have mathematica try to determine the > FourierTransform by > > FourierTransform[g[x],x,p] > > I always get the error that the recursion limit and the iteration limit were > exceeded... > > what am I'm doing wrong? > > Any help is appreciated > > thanks > > Eckhard > > -- > _________________________ > Ludwig Schlemm > Tel: +49 (0) 160 91617114 > LudwigSchlemm at hotmail.com > > -- Bob Hanlon hanlonr at cox.net