Re: FoourierTransform of a function defined in sections
- To: mathgroup at smc.vnet.net
- Subject: [mg70234] Re: FoourierTransform of a function defined in sections
- From: dimmechan at yahoo.com
- Date: Sun, 8 Oct 2006 02:04:57 -0400 (EDT)
- References: <eg4soa$ffu$1@smc.vnet.net><eg82ch$n2c$1@smc.vnet.net>
In my previous post I forgot the definition of hh[x]. hh[x_] := Piecewise[{{Sin[x]^2, Abs[x] <= Pi}, {0, x > Pi || x < Pi}}] So FourierTransform[hh[x], x, s] -((2*Sqrt[2/Pi]*Sin[Pi*s])/(-4*s + s^3)) (1/Sqrt[2*Pi])*Integrate[hh[x]*Exp[I*s*x], {x, -Infinity, Infinity}] -((2*Sqrt[2/Pi]*Sin[Pi*s])/(s*(-4 + s^2))) N[%] /. s -> 1/2 0.8510768648563898 Chop[(1/Sqrt[2*Pi])*NIntegrate[hh[x]*Exp[I*(1/2)*x], {x, -Infinity, Infinity}]] 0.8510768648563899 Î?/Î? dimmechan at yahoo.com ÎγÏ?αÏ?ε: > You could work as follows: > > $VersionNumber > 5.2 > > FourierTransform[hh[x], x, s] > -((2*Sqrt[2/Pi]*Sin[Pi*s])/(-4*s + s^3)) > > or > > (1/Sqrt[2*Pi])*Integrate[hh[x]*Exp[I*s*x], {x, -Infinity, Infinity}] > -((2*Sqrt[2/Pi]*Sin[Pi*s])/(s*(-4 + s^2))) > > In either case > > N[%] /. s -> 1/2 > 0.8510768648563898 > > (*check*) > > Chop[(1/Sqrt[2*Pi])*NIntegrate[hh[x]*Exp[I*(1/2)*x], {x, -Infinity, > Infinity}]] > 0.8510768648563899 > > > Cheers