Re: a fault in the Factor[] function for polynomials?
- To: mathgroup at smc.vnet.net
- Subject: [mg70436] Re: [mg70395] a fault in the Factor[] function for polynomials?
- From: Murray Eisenberg <murray at math.umass.edu>
- Date: Mon, 16 Oct 2006 02:35:21 -0400 (EDT)
- Organization: Mathematics & Statistics, Univ. of Mass./Amherst
- References: <200610150419.AAA12686@smc.vnet.net>
- Reply-to: murray at math.umass.edu
Why do you think this is a "fault" in Factor?? Simplify[(1 - 4x^2 + x^4)(1 + 4x^2 + x^4) == (x^4 + 2*Sqrt[3]x^2 - 1)( x^4 - 2*Sqrt[3]x^2 - 1)] True You can even factor additional ways, e.g.: Factor[1 - 14x^4 + x^8, Extension->Sqrt[3]] (-2 + Sqrt[3] - x^2)*(2 + Sqrt[3] - x^2)* (-2 + Sqrt[3] + x^2)*(2 + Sqrt[3] + x^2) Roger Bagula wrote: > Expand[(x^4 + 2*Sqrt[3]x^2 - 1)(x^4 - 2*Sqrt[3]x^2 - 1)] > 1 - 14x^4 + x^8 > Factor[%] > (1 - 4x^2 + x^4)(1 + 4x^2 + x^4) > > -- Murray Eisenberg murray at math.umass.edu Mathematics & Statistics Dept. Lederle Graduate Research Tower phone 413 549-1020 (H) University of Massachusetts 413 545-2859 (W) 710 North Pleasant Street fax 413 545-1801 Amherst, MA 01003-9305
- References:
- a fault in the Factor[] function for polynomials?
- From: Roger Bagula <rlbagula@sbcglobal.net>
- a fault in the Factor[] function for polynomials?