Re: FourierSinTransform
- To: mathgroup at smc.vnet.net
- Subject: [mg70451] Re: FourierSinTransform
- From: ab_def at prontomail.com
- Date: Mon, 16 Oct 2006 02:36:43 -0400 (EDT)
- References: <egi1sl$jbe$1@smc.vnet.net>
dimmechan at yahoo.com wrote: > Consider the following function > > h[ξ_] := Sqrt[1 + l^2*ξ^2]/ξ > > Then (the integral exists in the Hadamard sense) > > FourierSinTransform[h[ξ], ξ, x] > -(MeijerG[{{1}, {}}, {{-(1/2), 1/2}, {0}}, x^2/(4*l^2)]/(2*Sqrt[2*Pi])) > > Also > > FullSimplify[FourierSinTransform[%, x, ξ], {l > 0, ξ > 0}] > Sqrt[1 + l^2*ξ^2]/ξ > > Can I trust the first result? To evaluate the transform, start with the function h[t] - Sqrt[l^2]; its product with Sin[p*t] can be integrated as an ordinary function. After the change of variables t = t/Abs[l] we obtain Sqrt[2/Pi]*Integrate[(Sqrt[1 + t^2]/t - 1)*Sin[p*t/Abs[l]], {t, 0, Infinity}] == Sqrt[2/Pi]*Integrate[1/(t*(Sqrt[1 + t^2] + t))*Sin[p*t/Abs[l]], {t, 0, Infinity}] In[1]:= Sqrt[2/Pi]*Integrate[1/(t*(Sqrt[1 + t^2] + t))*Sin[p*t/Abs[l]], {t, 0, Infinity}, Assumptions -> p > 0] + FourierSinTransform[Sqrt[l^2], t, p] Out[1]= (Sqrt[l^2]*Sqrt[2/Pi])/p + MeijerG[{{1/2, 1}, {}}, {{1/2, 1/2}, {-(1/2), 0}}, p^2/(4*Abs[l]^2)]/(2*Sqrt[2*Pi]) In[2]:= % /. {l -> -3.3, p -> 2.2} Out[2]= 1.7449384 In[3]:= -MeijerG[{{1}, {}}, {{-1/2, 1/2}, {0}}, p^2/(4*l^2)]/ (2*Sqrt[2*Pi]) /. {l -> -3.3, p -> 2.2} Out[3]= 1.7449384 Maxim Rytin m.r at inbox.ru