Re: FourierCosTransform
- To: mathgroup at smc.vnet.net
- Subject: [mg70450] Re: FourierCosTransform
- From: ab_def at prontomail.com
- Date: Mon, 16 Oct 2006 02:36:36 -0400 (EDT)
- References: <egi1ui$jbu$1@smc.vnet.net>
dimmechan at yahoo.com wrote: > Consider the following function > > g[s_, y_] := 1/(E^(y*s)*s) > > Then (the integral exists in the Hadamard sense) > > FourierCosTransform[g[s, y], s, x] > (-EulerGamma - Log[1/x^2 + 1/y^2] + Log[1/y^2])/Sqrt[2*Pi] > > FullSimplify[%, {x > 0, y > 0}] > -((EulerGamma + Log[1 + y^2/x^2])/Sqrt[2*Pi]) > > FullSimplify[FourierCosTransform[%, x, s], y > 0] > (-1 + E^((-s)*y))/s > > As far as I know, the last result should be equal to g[s,y]. > > Also based on a distributional approach (Sosa and Bahar 1992) > the FourierCosTransform of g[s,y] should be > -((EulerGamma + Log[x^2+ y^2])/Sqrt[2*Pi]). > > Can someone pointed me out was it is going here? > > Following the next procedure I succeed in getting a result > similar with this of Sosa and Bahar (1992). > > Integrate[g[s, y]*Cos[s*x], {s, e, ee}, Assumptions -> 0 < e < ee]; > Normal[FullSimplify[Series[%, {e, 0, 2}], e > 0]]; > Normal[Block[{Message}, FullSimplify[Series[%, {ee, Infinity, 2}], ee > > 0]]]; > DeleteCases[%, (a_)*Log[e], Infinity]; > DeleteCases[%, _[_, _[ee, _], _], Infinity]; > Limit[%, e -> 0]; > % /. -Log[a_] - Log[b_] :> -Log[a*b]; > > FullSimplify[%] > (1/2)*(-2*EulerGamma - Log[x^2 + y^2]) > > I really appreciate any kind of help. > > Regards > Dimitris Here 1/t is actually the functional P(1/t) defined as (P(1/t), phi(t)) == Integrate[(phi[t] - phi[0])/t, {t, 0, 1}] + Integrate[phi[t]/t, {t, 1, Infinity}] (which is why it is related to the regularization). So, going by the definition, we have In[1]:= Assuming[p > 0 && y > 0, Sqrt[2/Pi]*(Integrate[(Cos[p*t]*E^(-y*t) - 1)/t, {t, 0, 1}] + Integrate[Cos[p*t]*E^(-y*t)/t, {t, 1, Infinity}]) // Simplify] Out[1]= (-2*EulerGamma + I*Pi - Log[I*p - y] - Log[I*p + y])/Sqrt[2*Pi] which is the correct value for the cosine transform (note the coefficient 2 before EulerGamma). Or we can integrate from eps to infinity and then take the regular part: In[2]:= Assuming[p > 0 && y > 0 && eps > 0, Sqrt[2/Pi]*Integrate[Cos[p*t]*E^(-y*t)/t, {t, eps, Infinity}] // Series[#, {eps, 0, 0}, Assumptions -> eps > 0]& // SeriesCoefficient[#, 0] /. Log[eps] -> 0&] Out[2]= (-2*EulerGamma - Log[-I*p - y] - Log[I*p - y])/Sqrt[2*Pi] In some cases you can obtain the same result (the regular part of the integral) from Integrate[..., GenerateConditions -> False]. Maxim Rytin m.r at inbox.ru