Re: Re: Demostration
- To: mathgroup at smc.vnet.net
- Subject: [mg70465] Re: [mg70453] Re: [mg70369] Demostration
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Tue, 17 Oct 2006 02:58:32 -0400 (EDT)
- Reply-to: hanlonr at cox.net
The second test in Select is unnecessary. This should have been Select[Flatten[ Table[{{x, -Sqrt[x^3 + 9]}, {x, Sqrt[x^3 + 9]}}, {x, -2, 500}], 1], IntegerQ[#[[2]]] &] Bob Hanlon ---- Bob Hanlon <hanlonr at cox.net> wrote: > Reduce[{y^2==x^3+9}, {x,y},Integers] > > (x | y) âË?Ë? Integers && x >= -2 && > (y == -Sqrt[x^3 + 9] || y == Sqrt[x^3 + 9]) > > Select[Flatten[ > Table[{{x,-Sqrt[x^3+9]},{x,Sqrt[x^3+9]}}, > {x,-2,500}],1], > IntegerQ[#[[2]]]&&#[[2]]^2==#[[1]]^3+9&] > > {{-2, -1}, {-2, 1}, {0, -3}, {0, 3}, {3, -6}, {3, 6}, > {6, -15}, {6, 15}, {40, -253}, {40, 253}} > > Length[%] > > 10 > > > Bob Hanlon > > ---- Miguel <mibelair at hotmail.com> wrote: > > How canI to demostrate than the equation y^2=x^3+9 has 10 integer > > solutions? > > > > -- > > Bob Hanlon > hanlonr at cox.net > > -- Bob Hanlon hanlonr at cox.net