a better solution for a fourth order differential equation
- To: mathgroup at smc.vnet.net
- Subject: [mg70480] a better solution for a fourth order differential equation
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Tue, 17 Oct 2006 02:59:22 -0400 (EDT)
Harmonic Poisson type equation: (d'am-(4*Pi*L)*T/Phi)*(d'am+(4*Pi*Lstar)*T/Phi)*Phi=0 L=2/(3+2*w) Lstar=2/(3-2*w) L*LStar=Abs[L]^2 In this model : Abs[L]^2=4/(9-4*(w2))=4/(9-4*Phi) Which should allow a solution for the scalar field Phi in terms of the Energy density. 4d symmetrical linear partition as x->[x[i],{i,1,4}]: (scale of energy density as one) y''''[x]*(4*y[x]-9)+48*Pi*y''[x]-64*Pi^2=0 Solves numerically in Mathematica with suitable boundary conditions I'd like to sove it better with more realistic energy densities and boundary conditions. Mathematica Workbook: \!\(\* RowBox[{\(Clear[Phi, x, deq, L, Lstar, w, y]\), "\n", \(p4 = D[y[x], {x, 4}]\), "\n", \(p2 = D[y[x], {x, 2}]\), "\n", \(p1[x_] = D[y[x], {x, 1}]\), "\n", \(p1[0]\), "\n", \(p3[x_] = D[y[x], {x, 3}]\), "\n", \(p3[0]\), "\[IndentingNewLine]", "\n", \(Expand[\((A - L*K)\)*\((A - Lstar*K)\)]\), "\n", \(w = Sqrt[y[x]]\), "\n", \(L = 2/\((3 + 2*w)\)\), "\n", \(Lstar = 2/\((3 - 2*w)\)\), "\n", \(deq = Expand[FullSimplify[ ExpandAll[\((p4 - p2\ K\ L - p2\ K\ Lstar + K\^2\ L\ Lstar)\)*\((\(-9\) + 4\ y[x])\)]]]\), "\n", \(Solve[\(-4\)\ K\^2 - 9\ x + 4\ A0\ x \[Equal] 0, x]\), "\n", \(DSolve[{deq == 0, y[0] \[Equal] 0}, y[x], x]\), "\n", \(K = 4*Pi\), "\n", RowBox[{\(z[x_]\), "=", RowBox[{\(y[x]\), "/.", RowBox[{"NDSolve", "[", RowBox[{ RowBox[{"{", RowBox[{\(deq == 0\), ",", \(y[0] \[Equal] 1/\((6.6732*10^\((\(-8\))\))\)\), ",", RowBox[{ RowBox[{ SuperscriptBox["y", "\[Prime]", MultilineFunction->None], "[", "0", "]"}], "\[Equal]", "0"}], ",", RowBox[{ RowBox[{ SuperscriptBox["y", "\[Prime]\[Prime]", MultilineFunction->None], "[", "0", "]"}], "==", \(-\(K\/3\)\)}], ",", RowBox[{ RowBox[{ SuperscriptBox["y", TagBox[\((3)\), Derivative], MultilineFunction->None], "[", "0", "]"}], "\[Equal]", \(\(-4\)*K2/9\)}]}], "}"}], ",", \(y[x]\), ",", \({x, \(-10\), 10}\)}], "]"}]}]}], "\n", \(Plot[\(-ArcTanh[2*x]\) + 1/\((6.6732*10^\((\(-8\))\))\), {x, \(-2\), 2}]\), "\n", \(Plot[\(-\((\(-ArcTanh[2*x]\) + 1/\((6.6732*10^\((\(-8\))\))\) - z[x])\)\), {x, \(-2\), 2}]\), "\n", \(e = 4.80325*10^\((\(-10\))\)\), "\n", \(c = 2.997925*1010\), "\n", \(mp = 1.6726140*10^\((\(-24\))\)\), "\n", \(me = 9.10958*10^\((\(-28\))\)\), "\n", \(r[m_] = e2/\((m*c2)\)\), "\n", \(r[me]\), "\n", \(v[r[me]]\), "\n", \(r[mp]\), "\n", \(v[r[mp]]\), "\n", \(v[r_] = 4*Pi*r3/3\), "\n", \(Scalemp = mp*c2/v[r[mp]]\), "\n", \(Scaleme = me*c2/v[r[me]]\), "\n", \(hbar = 1.0545919*10^\((\(-27\))\)\), "\n", \(alphaE = \((hbar*c)\)/e\), "\n", \(Scalemp/alphaE\), "\n", \(Scaleme/alphaE\), "\n", \(ScaleA = 28*mp*c2/v[137.03608*r[me]]\)}]\)