Re: sum of binomials .. bug ?
- To: mathgroup at smc.vnet.net
- Subject: [mg70500] Re: sum of binomials .. bug ?
- From: dimmechan at yahoo.com
- Date: Wed, 18 Oct 2006 04:16:38 -0400 (EDT)
- References: <eh20si$2ms$1@smc.vnet.net>
There is not a bug at all. Be more careful before accused Mathematica of bugging. I do not say that it is panacea but Most of the cases when someone thinks he encountered a bug the fault is due to him. Any way for your case the following will demonstrate that indded there is no bug. (Everything is in InputForm). Quit f[k_] := Sum[Binomial[21 - k, i], {i, 0, 10 - k}] Trace[f[3], Binomial] {{HoldForm[Binomial[18, 0]], HoldForm[1]}, {HoldForm[Binomial[18, 1]], HoldForm[18]}, {HoldForm[Binomial[18, 2]], HoldForm[153]}, {HoldForm[Binomial[18, 3]], HoldForm[816]}, {HoldForm[Binomial[18, 4]], HoldForm[3060]}, {HoldForm[Binomial[18, 5]], HoldForm[8568]}, {HoldForm[Binomial[18, 6]], HoldForm[18564]}, {HoldForm[Binomial[18, 7]], HoldForm[31824]}} Trace[f[x] /. x -> 3] {{HoldForm[f[x]], HoldForm[Sum[Binomial[21 - x, i], {i, 0, 10 - x}]], HoldForm[2^(21 - x)]}, HoldForm[2^(21 - x) /. x -> 3], HoldForm[2^(21 - 3)], {{HoldForm[-3], HoldForm[-3]}, HoldForm[21 - 3], HoldForm[18]}, HoldForm[2^18], HoldForm[262144]} g[k_] = Sum[Binomial[21 - k, i], {i, 0, 10 - k}] 2^(21 - k) g[3] 262144 g[x] /. x -> 3 262144