Re: sum of binomials .. bug ?
- To: mathgroup at smc.vnet.net
- Subject: [mg70563] Re: sum of binomials .. bug ?
- From: Peter Pein <petsie at dordos.net>
- Date: Thu, 19 Oct 2006 03:23:38 -0400 (EDT)
- References: <eh20si$2ms$1@smc.vnet.net> <eh4q2f$8rd$1@smc.vnet.net>
Jean-Marc Gulliet schrieb: > yann_che2 at yahoo.fr wrote: >> Hi everyone, >> >> on Mathematica 5.2 (mac os x), experimenting sums of binomials, i tried >> the following: >> >> In[6]:= f[k_] := Sum[Binomial[21 - k, i], {i, 0, 10 - k}] >> In[7]:= x = 3; f[x] >> Out[7]:= 63004 >> In[8]:= Clear[x] ; f[x] /. x -> 3 >> Out[8]:= 262144 >> In[9]:= Clear[x] ; f[x] >> Out[9]:= 2^(21-x) >> >> >> does anyone know why Out[7] and Out[8] give different results ? do you >> think it is a bug ? i searched everywhere in the forums but couldn't >> find anything that helped. >> do you have a clue ? >> >> yann >> > No bug here. You are not evaluating the same function. In the first > case, k is replaced by the value 3, then the sum/binomial is evaluated. > In the second case, the sum/binomial is evaluated first, then the value > 3 is substituted to k. You can get a consistent result using an > immediate assignment rather than a delayed one. > > In[1]:= > f[k_] := Sum[Binomial[21 - k, i], {i, 0, 10 - k}] > > In[2]:= > Trace[f[3]] > > In[3]:= > Trace[f[x] /. x -> 3] > > In[4]:= > Clear[f] > f[k_] = Sum[Binomial[21 - k, i], {i, 0, 10 - k}] > > Out[5]= > 2^(21 - k) > > In[6]:= > f[3] > > Out[6]= > 262144 > > In[7]:= > f[x] /. x -> 3 > > Out[7]= > 262144 > > Regards, > Jean-Marc > Hi Jean-Marc, do not trust any CAS without getting a second opinion. The bugs are not always as obvious as in the following example: In[1]:= hilDet[n_] := Product[(n^2 - k^2)^(k - n)*k!^2, {k, 1, n - 1}]/n^n; Testing for some n: In[2]:= And @@ Table[hilDet[k] == Det[Array[1/(#1 + #2 - 1) & , {k, k}]], {k, 10}] Out[2]= True split n^2-k^2: In[3]:= bug[n_] := (Product[(n + k)^(k - n)*k!^2, {k, 1, n - 1}]*Product[(n - k)^(k - n), {k, 1, n - 1}])/n^n In[4]:= bug[10] == hilDet[10] Out[4]= True well, but: In[5]:= bug[n] Out[5]= (E^((1/12)*(1 - 6*n + 6*n^2 - 12*Derivative[1, 0][Zeta][-1, 1 - n]))* Product[(k + n)^(k - n)*k!^2, {k, 1, -1 + n}])/(n^n*Glaisher) In[6]:= % /. n -> 10 Out[6]= (20155392*E^((1/12)*(541 - 12*Derivative[1, 0][Zeta][-1, -9])))/(43160654253356787452215625*Glaisher) In[7]:= hilDet[n] Out[7]= Product[(-k^2 + n^2)^(k - n)*k!^2, {k, 1, -1 + n}]/n^n P²