Re: damped oscilations data fit
- To: mathgroup at smc.vnet.net
- Subject: [mg70576] Re: damped oscilations data fit
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Fri, 20 Oct 2006 05:21:39 -0400 (EDT)
- References: <eh4ntl$7sb$1@smc.vnet.net> <eh7931$dig$1@smc.vnet.net>
Jens-Peer Kuska wrote: >Hi, > >model = Exp[-l*t]*Sin[w*t + phi] + c; >ff = FindFit[N[data], model, {{l, 1/1000}, {w, >1/400}, {phi, 0}, {c, 60}}, t] > >Plot[Evaluate[model /. ff], {t, 0, 1014}, >PlotRange -> All, >Epilog -> {Point /@ data}] > >Regards > Jens > > >| > > > > Jens-Peer Kuska, Your mechanics work fine here, but a better model seems to be an Gaussian decay instead of an exponential one: model=a*Exp[-w^2*t^2]+b*Sin[w*t]+c Roger a = {{0, 54}, {120, 56.5}, {230, 56}, {305, 54}, {340, 53}, {360, 52.7}, {378, 52.5}, { 405, 52.5}, {443, 53}, {480, 53.5}, {510, 54}, {540, 54.7}, {570, 54.4}, {602, 56}, {643, 56.5}, {660, 56.5}, { 685, 56.25}, {706, 56}, {727, 55.25}, {743, 55.5}, {756, 55.25}, {775, 55}, {787, 54.75}, {799, 54.5}, {814, 54.25}, {828, 54}, {845, 53.75}, { 858, 53.5}, {877, 53.25}, {894, 53}, {923, 52}, {951, 53}, {983, 53.5}, {1014, 54}} g = ListPlot[a, PlotJoined -> True] y[x_] = Fit[a, {1, Exp[-x^2/89^2], Sin[x/89]}, x] g1 = Plot[y[x], {x, 0, 1050}] Show[{g, g1}] data = {{0, 54}, {120, 56.5}, {230, 56}, {305, 54}, {340, 53}, {360, 52.7}, {378, 52.5}, {405, 52.5}, { 443, 53}, {480, 53.5}, {510, 54}, {540, 54.7}, { 570, 54.4}, {602, 56}, {643, 56.5}, {660, 56.5}, {685, 56.25}, { 706, 56}, { 727, 55.25}, {743, 55.5}, {756, 55.25}, {775, 55}, {787, 54.75}, {799, \ 54.5}, {814, 54.25}, {828, 54}, {845, 53.75}, {858, 53.5}, {877, 53.25}, {894, 53}, {923, 52}, {951, 53}, {983, 53.5}, {1014, 54}} model = Exp[-(w*t + phi)^2] + l*Sin[w*t + phi] + c; ff = FindFit[N[data], model, {{l, 1/1000}, {w, 1/400}, {phi, 0}, {c, 60}}, t] g1 = Plot[Evaluate[model /. ff], {t, 0, 1014}, Epilog -> {Point /@ data}] g = ListPlot[data, PlotJoined -> True] Show[{g, g1}]