Re: Why all the if's the answer
- To: mathgroup at smc.vnet.net
- Subject: [mg70795] Re: Why all the if's the answer
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Sat, 28 Oct 2006 05:21:26 -0400 (EDT)
- References: <ehs31u$oe4$1@smc.vnet.net>
First things first. f = -Log[y*(1 + Cos[alpha])] + Log[(b*c - b*y + c*y*Cos[alpha] + Sqrt[b^2*(c - y)^2 + c^2*y^2 + 2*b*c*(c - y)*y*Cos[alpha]])/c]; Relative innocent with Sqrt and Log and so many parameters? For me it is already too much you got an anlytical solution! Secondly you don't neeed y>0 in the assumptions since you integrate for 0<y<c (c>0). Thirdly, the easy part. f[[1]] -Log[y*(1 + Cos[alpha])] Assuming[c > 0 && b > 0 && alpha > 0 && alpha < Pi/2, Integrate[(y/c)*f[[1]], {y, 0, c}]] (-(1/4))*c*(-1 + 2*Log[c] + 2*Log[1 + Cos[alpha]]) And now the difficult part. f[[2]] Log[(b*c - b*y + c*y*Cos[alpha] + Sqrt[b^2*(c - y)^2 + c^2*y^2 + 2*b*c*(c - y)*y*Cos[alpha]])/c] I don't see how you will get a simpler answer without many nested If's (nevertheless I hope I am wrong!). By the way the indefinite integral is very easy (but unfortunately you want the definite!). Timing[Integrate[(y/c)*f[[2]], y]] {2.859*Second, (1/(4*c))*(-y^2 + (2*b*c*Sqrt[b^2*(c - y)^2 + c^2*y^2 - 2*b*c*y*(-c + y)*Cos[alpha]])/ (b^2 + c^2 - 2*b*c*Cos[alpha]) + 2*y^2*Log[(b*c - b*y + c*y*Cos[alpha] + Sqrt[b^2*(c - y)^2 + c^2*y^2 - 2*b*c*y*(-c + y)*Cos[alpha]])/c] + (2*b^2*c^2*(b - c*Cos[alpha])*Log[2*(Sqrt[b^2*(c - y)^2 + c^2*y^2 - 2*b*c*y*(-c + y)*Cos[alpha]] + (c^2*y + b^2*(-c + y) - b*c*(-c + 2*y)*Cos[alpha])/Sqrt[b^2 + c^2 - 2*b*c*Cos[alpha]])])/ (b^2 + c^2 - 2*b*c*Cos[alpha])^(3/2))} I suggest you to give stricter values for the parameters I tried Timing[Assuming[c == 2 && b == 1 && alpha == Pi/4, Integrate[(y/c)*f[[2]], {y, 0, c}]]] {21.281000000000002*Second, (Sqrt[5 - 2*Sqrt[2]]*(4539291753586583 - 12193860859319106*Log[2 + Sqrt[2]]) + 8*Sqrt[10 - 4*Sqrt[2]]*(-401220497585102 + 1077795212604845*Log[2 + Sqrt[2]]) + 2*(-1880236207775049 + 1329527772905767*Sqrt[2])*Log[2/(16 - 9*Sqrt[2] + 3*Sqrt[10 - 4*Sqrt[2]] - 6*Sqrt[5 - 2*Sqrt[2]])])/ (2*(7053121 - 4986960*Sqrt[2])^2*Sqrt[5 - 2*Sqrt[2]]*(-33 + 20*Sqrt[2]))} N[%[[2]]] 1.0492574322774637 lims = {{y, 0, c}} /. c -> 2; NIntegrate[(y/c)*f[[2]] /. {c -> 2, b -> 1, alpha -> Pi/4}, Evaluate[Sequence @@ lims]] 1.0492573918492765 Regards Dimitris