Re: Searching for a function

• To: mathgroup at smc.vnet.net
• Subject: [mg70878] Re: Searching for a function
• From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
• Date: Mon, 30 Oct 2006 05:33:12 -0500 (EST)
• Organization: The Open University, Milton Keynes, UK
• References: <ehv8vp\$g6f\$1@smc.vnet.net> <ei1a0t\$97b\$1@smc.vnet.net>

```Bonny Banerjee wrote:
> "Bonny Banerjee" <banerjee.28 at osu.edu> wrote in message
> news:ehv8vp\$g6f\$1 at smc.vnet.net...
>> Is it possible for Mathematica to solve this problem:
>>
>> Given sets A and B, does there exist a function from A to B? If yes, what
>> is
>> the function?
>>
>>
>> Here is an example:
>>
>> Let, A = {x such that 0<x<11 and Mod[x,2]==0}
>>
>> B = {y such that 0<y<11 and Mod[y+1,2]==0}
>>
>> Then, there exists a function from A to B
>>
>> y = x - 1
>>
>>
>> Thus, is there a way to specify arbitrary sets A, B, and use Mathematica
>> to
>> figure out whether there exits a function from A to B or not?
>>
>> Thanks,
>> Bonny.
>>
>>
>
>
> I am looking for continuous functions only from set A to set B. Sorry
> for not making it clear.
>
> --Bonny.
>
And polynomial functions -- say, obtained by interpolation as suggested
by other posters -- are not continuous, aren't they?

Regards,
Jean-Marc

```

• Prev by Date: Advanced nonlinear integro-differential equation
• Next by Date: Re: Labelled ticks at the origin
• Previous by thread: Re: Searching for a function
• Next by thread: Re: Searching for a function