Re: Known recursion link to Hermite polynomials not solved in Mathematica
- To: mathgroup at smc.vnet.net
- Subject: [mg69478] Re: Known recursion link to Hermite polynomials not solved in Mathematica
- From: Paul Abbott <paul at physics.uwa.edu.au>
- Date: Thu, 14 Sep 2006 06:54:45 -0400 (EDT)
- Organization: The University of Western Australia
- References: <ee647q$5nb$1@smc.vnet.net>
In article <ee647q$5nb$1 at smc.vnet.net>, Roger Bagula <rlbagula at sbcglobal.net> wrote: > A000898 in Sloan's OEIS: > > a[0] = 1; a[1] = 2; > a[n_] := a[n] = 2*(a[n - 1] + (n - 1)*a[n - 2]) > b = Table[a[n], {n, 0, 30}] > > {1, 2, 6, 20, 76, 312, 1384, 6512, 32400, 168992, 921184, 5222208, > 30710464, > 186753920, 1171979904, 7573069568, 50305536256, 342949298688, > 2396286830080, > 17138748412928, 125336396368896, 936222729254912, 7136574106003456, > 55466948299223040, 439216305474605056, 3540846129311916032, > 29042507532354084864, 242209013788927803392, 2052713434324976189440, > 17669131640829909368832, 154395642472508437725184} > > Table[HermiteH[n, I]*I^n, {n, 0, 30}] > > {1, -2, 6, -20, 76, -312, 1384, -6512, > 32400, -168992, 921184, -5222208, 30710464, -186753920, 1171979904, > -7573069568, 50305536256, -342949298688, 2396286830080, -17138748412928, > 125336396368896, -936222729254912, > 7136574106003456, -55466948299223040, 439216305474605056, > -3540846129311916032, 29042507532354084864, -242209013788927803392, > 2052713434324976189440, -17669131640829909368832, 154395642472508437725184} > > Yet Mathematica refuses to give that solution ( using Bob Hanlon's solver): > f[n_Integer] = Module[{a}, a[n] /. RSolve[{a[n] == 2*( a[n - 1] + (n - > 1)*a[n - 2]), a[0] == 1, a[1] == 2}, a[n], n][[1]] // FullSimplify] However, Mathematica can find this solution using <<DiscreteMath` ExponentialGeneratingFunction[{a[0] == 1, a[1] == 2, a[n] == 2 (a[n - 1] + (n - 1) a[n - 2])}, a[n], n, z] and, since Exp[-z^2 + 2 z s] is the ExponentialGeneratingFunction for HermiteH[n, s], the connection is clear. > My reason for wanting a solution is my own Hermite related recursion > A121966: > a[0] = 1; a[1] = 2; > a[n_] := a[n] = a[n - 1] - (n - 1)*a[n - 2] > Table[a[n], {n, 0, 30}] > > {1, 2, 1, -3, -6, 6, 36, 0, -252, -252, 2016, 4536, -17640, -72072, > 157248, 1166256, -1192464, -19852560, 419328, 357765408, 349798176, > -6805509984, -14151271680, 135569947968, 461049196608, -2792629554624, > -14318859469824, 58289508950400, 444898714635648, -1187207535975552, > -14089270260409344} > > Which I think has some simple HermiteH type solution. I don't think so. If you try ExponentialGeneratingFunction[{a[0] == 1, a[1] == 2, a[n] == a[n - 1] - (n - 1) a[n - 2]}, a[n], n, z] you will find that the solution involves Exp[-(z - 1)^2 / 2] -- which leads to HermiteH -- but that this multiplies Erfi[(z - 1)/Sqrt[2]] Cheers, Paul _______________________________________________________________________ Paul Abbott Phone: 61 8 6488 2734 School of Physics, M013 Fax: +61 8 6488 1014 The University of Western Australia (CRICOS Provider No 00126G) AUSTRALIA http://physics.uwa.edu.au/~paul