Re: Differentiation problem/bug?
- To: mathgroup at smc.vnet.net
- Subject: [mg69783] Re: Differentiation problem/bug?
- From: Paul Abbott <paul at physics.uwa.edu.au>
- Date: Sat, 23 Sep 2006 04:44:06 -0400 (EDT)
- Organization: The University of Western Australia
- References: <eevrea$gfd$1@smc.vnet.net>
In article <eevrea$gfd$1 at smc.vnet.net>, Arturas Acus <acus at itpa.lt> wrote: > the only way I can explain the rezults of simple differentiation command > D[] bellow is the dissapointing bug, which was absent in 5.0, but exist > in: > $Version > 5.2 for Linux (June 20, 2005) > > In[1]: inp = 1/4 + 3/(8*E^((2*I)*F)) + (3*E^((2*I)*F))/8 - > E^((-2*I)*F - I*\[Theta])/4 + E^((2*I)*F - I*\[Theta])/4 - > E^((-2*I)*F + I*\[Theta])/4 + E^((2*I)*F + I*\[Theta])/4 + > E^((-2*I)*F - (2*I)*\[Theta])/16 + E^((2*I)*F - (2*I)*\[Theta])/16+ > E^((-2*I)*F + (2*I)*\[Theta])/16 + E^((2*I)*F + (2*I)*\[Theta])/16- > 1/(8*E^((2*I)*\[Theta])) - E^((2*I)*\[Theta])/8 > > In[2]: D[inp, r, NonConstants -> {F}] > Out[2]: 0 > > how it was found: > > In[3]: D[#, r, NonConstants -> {F}] & /@ Expand[inp] > Out[3]: (((-3*I)/4)*D[F, r, NonConstants -> {F}])/E^((2*I)*F) + > ((3*I)/4)*E^((2*I)*F)*D[F, r, NonConstants -> {F}] > > check: > > In[4]: D[Evaluate[inp /. {F -> F[r]}], r] // FullSimplify > Out[4]: ((-I/8)*((-1 + E^(I*\[Theta]))^4 - E^((4*I)*F[r])*(1 + E^(I* > \[Theta]))^4)*Derivative[1][F][r])/E^((2*I)*(\[Theta] + F[r])) > > > I believe I can trust the Out[4] rezult. Most dissapointing is that now > I cannot trust my previous calculations, because somwhere I changed from > version 5.0 to 5.2, and 5.0 gives correct rezult. Please check this > behaviour for other versions/OS and be carefull using NonConstants > option. I never use NonConstants. Also, it is a good idea to avoid using variables involving capital letters. For calculations where there is implicit dependence with respect to a variable I use Dt instead. inp = 1/4 + 3/8/E^(2 I f) + (3/8) E^(2 I f) - (1/4) E^(-2 I f - I t) + (1/4) E^(2 I f - I t) - (1/4) E^(I t - 2 I f) + (1/4) E^(2 I f + I t) + (1/16) E^(-2 I f - 2 I t) + (1/16) E^(2 I f - 2 I t) + (1/16) E^(2 I t - 2 I f) + (1/16) E^(2 I f + 2 I t) - 1/8/E^(2 I t) - (1/8) E^(2 I t) Dt[t, r] ^= 0; Dt[inp, r] // FullSimplify Cheers, Paul _______________________________________________________________________ Paul Abbott Phone: 61 8 6488 2734 School of Physics, M013 Fax: +61 8 6488 1014 The University of Western Australia (CRICOS Provider No 00126G) AUSTRALIA http://physics.uwa.edu.au/~paul
- Follow-Ups:
- Re: Re: Differentiation problem/bug?
- From: Arturas Acus <acus@itpa.lt>
- Re: Re: Differentiation problem/bug?