Re: mapping of function revisited
- To: mathgroup at smc.vnet.net
- Subject: [mg69983] Re: [mg69923] mapping of function revisited
- From: gardyloo <gardyloo at mail.wsu.edu>
- Date: Thu, 28 Sep 2006 06:18:05 -0400 (EDT)
Use replacements? exp1/.{x->Sin[x], z->Sin[z]} I think that'll do what you want. Curtis O. dimmechan at yahoo.com wrote: > Searching a little more I found one more alternative > > exp1 = x^3 + (1 + z)^2; > > MapAt[Sin, exp1, Flatten[(Position[exp1, #1] & ) /@ Cases[exp1, _?( > !NumberQ[#1] & ), {-1}], 1]] > Sin[x]^3 + (1 + Sin[z])^2 > > Are there any other alternatives? Especially with proper pattern > matching? > > Thinking a little harder I consider the following pure function > > g = TrueQ[First[ToCharacterCode[ToString[p]]] < > First[ToCharacterCode[ToString[#1]]] < > First[ToCharacterCode[ToString[z]]]] & ; > > Then > > MapAt[Sin, exp1, Flatten[(Position[exp1, #1] & ) /@ Cases[exp1, _?( > !NumberQ[#1] && g[#1] & ), {-1}], 1]] > (1 + z)^2 + Sin[x]^3 > > Is it possible to obtain the previous result more compactly? > > Thanks > > > -- ========================================================== Curtis Osterhoudt gardyloo at mail.remove_this.wsu.and_this.edu PGP Key ID: 0x088E6D7A Please avoid sending me Word or PowerPoint attachments See http://www.gnu.org/philosophy/no-word-attachments.html ==========================================================