Re: Indefinite integration problem on ArcTanh(f(Cos))
- To: mathgroup at smc.vnet.net
- Subject: [mg69959] Re: Indefinite integration problem on ArcTanh(f(Cos))
- From: dimmechan at yahoo.com
- Date: Thu, 28 Sep 2006 06:15:50 -0400 (EDT)
- References: <efdks2$12a$1@smc.vnet.net>
Dear Andrew I will concentrate on the mathematical aspects of your question. In what follows I have converted everything in InputForm. $VersionNumber 5.2 ac[k_, t_] = Sin[t]/(1 + k*Cos[2*t]) Sin[t]/(1 + k*Cos[2*t]) vel[k_, t_] = FullSimplify[Integrate[ac[k, t], t], 0 < k < 1] ArcTanh[(Sqrt[2]*Cos[t])/Sqrt[(-1 + k)/k]]/(Sqrt[2]*Sqrt[(-1 + k)*k]) FullSimplify[D[vel[k, t], t], 0 < k < 1] == ac[k, t] (*check*) True pos[k_, t_] = FullSimplify[Integrate[vel[k, t], t], 0 < k < 1] (1/(8*Sqrt[2]*Sqrt[(-1 + k)*k]))*(4*t*(Log[1 - I*Sqrt[2]*Sqrt[-(k/(-1 + k))]*Cos[t]] - Log[1 + I*Sqrt[2]*Sqrt[-(k/(-1 + k))]*Cos[t]]) + RootSum[k + 2*#1^2 + k*#1^4 & , (1/(k + #1^2))*(-2*k*t*Log[1 - E^(I*t)*#1] + 2*I*k*PolyLog[2, E^(I*t)*#1] + Sqrt[2]*Sqrt[k/(-1 + k)]*t*Log[1 - E^(I*t)*#1]* #1 - Sqrt[2]*k*Sqrt[k/(-1 + k)]*t*Log[1 - E^(I*t)*#1]*#1 - I*Sqrt[2]*Sqrt[k/(-1 + k)]*PolyLog[2, E^(I*t)*#1]*#1 + I*Sqrt[2]*k*Sqrt[k/(-1 + k)]*PolyLog[2, E^(I*t)*#1]*#1 - 2*t*Log[1 - E^(I*t)*#1]*#1^2 + 2*I*PolyLog[2, E^(I*t)*#1]*#1^2 - Sqrt[2]*Sqrt[k/(-1 + k)]*t*Log[1 - E^(I*t)*#1]*#1^3 + Sqrt[2]*k*Sqrt[k/(-1 + k)]*t*Log[1 - E^(I*t)*#1]*#1^3 + I*Sqrt[2]*Sqrt[k/(-1 + k)]*PolyLog[2, E^(I*t)*#1]*#1^3 - I*Sqrt[2]*k*Sqrt[k/(-1 + k)]*PolyLog[2, E^(I*t)*#1]*#1^3) & ] - RootSum[k + 2*#1^2 + k*#1^4 & , (1/(k + #1^2))*(-2*k*t*Log[1 - E^(I*t)*#1] + 2*I*k*PolyLog[2, E^(I*t)*#1] - Sqrt[2]*Sqrt[k/(-1 + k)]*t*Log[1 - E^(I*t)*#1]*#1 + Sqrt[2]*k*Sqrt[k/(-1 + k)]*t*Log[1 - E^(I*t)*#1]*#1 + I*Sqrt[2]*Sqrt[k/(-1 + k)]*PolyLog[2, E^(I*t)*#1]*#1 - I*Sqrt[2]*k*Sqrt[k/(-1 + k)]*PolyLog[2, E^(I*t)*#1]*#1 - 2*t*Log[1 - E^(I*t)*#1]*#1^2 + 2*I*PolyLog[2, E^(I*t)*#1]*#1^2 + Sqrt[2]*Sqrt[k/(-1 + k)]*t*Log[1 - E^(I*t)*#1]*#1^3 - Sqrt[2]*k*Sqrt[k/(-1 + k)]*t*Log[1 - E^(I*t)*#1]*#1^3 - I*Sqrt[2]*Sqrt[k/(-1 + k)]*PolyLog[2, E^(I*t)*#1]*#1^3 + I*Sqrt[2]*k*Sqrt[k/(-1 + k)]*PolyLog[2, E^(I*t)*#1]*#1^3) & ]) FullSimplify[D[pos[k,t]]< k < 1] -((I*(Log[1 - I*Sqrt[2]*Sqrt[-(k/(-1 + k))]*Cos[t]] - Log[1 + I*Sqrt[2]*Sqrt[-(k/(-1 + k))]*Cos[t]]))/ (2*Sqrt[2]*Sqrt[(-(-1 + k))*k])) FullSimplify[% - vel[k, t], 0 < k < 1] (*check*) 0 Plot[ac[1/10, t], {t, 0, 10}] Plot[vel[1/10, t], {t, 0, 10}] Everything seems fine up to here, both physically and mathematically. However the obtained pos[k,t] function expressed in terms of polylogs has imaginary and real parts. Information[PolyLog] "PolyLog[n, z] gives the nth polylogarithm function of z. PolyLog[n, p, z] gives the Nielsen generalized polylogarithm function of z for parameters n and p." Attributes[PolyLog] = {Listable, NumericFunction, Protected, ReadProtected} The obtained indefinite integral is correct as you see but it does not make sense physically (at least to me). I do not know if and how you can persuade Mathematica to give another indefinite integral. Anyway for history Plot[Re[pos[1/10, t]], {t, 0, 10}] Plot[Im[pos[1/10, t]], {t, 0, 10}] I hope others' replies to be more helpful for you. Regards Dimitris P.S. I have worked also with another symbolic system and I got almost similar results. f:=sin(t)/(1+k*cos(2*t)); f := sin(t)/(1+k*cos(2*t)) plot(subs(k=1/10,f),t=0..10); g:=int(f,t); g := 1/2*2^(1/2)/((-1+k)*k)^(1/2)*arctanh(k*cos(t)*2^(1/2)/((-1+k)*k)^(1/2)) plot(subs(k=1/10,g),t=0..10); h:=int(g,t); (I do not present the result due to their length) hh:=simplify(h) assuming(0<k,k<1); (I do not present the result due to their length) plot(subs(k=1/10,Re(hh)),t=0..10); plot(subs(k=1/10,Im(hh)),t=0..10);