verification
- To: mathgroup at smc.vnet.net
- Subject: [mg74701] verification
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Sun, 1 Apr 2007 04:15:39 -0400 (EDT)
Hello. foo = {ArcTan[8/(1 - Sqrt[-15 - 4*I])] + ArcTan[8/(1 + Sqrt[-15 - 4*I])] + ArcTan[8/(1 - Sqrt[-15 + 4*I])] + ArcTan[8/(1 + Sqrt[-15 + 4*I])], ArcTan[3] + ArcTan[5] + ArcTan[41/3] + ArcTan[21], 2*Pi - ArcTan[1/4] - ArcTan[5/12]}; The elements of foo list are equal Chop[N[foo, 30]] {5.64341552435296080601310475496,5.64341552435296080601310475496,5.\ 64341552435296080601310475496} Block[{Message}, FullSimplify[foo[[2]] == foo[[3]]]] Block[{Message}, FullSimplify[foo[[1]] == foo[[3]]]] Block[{Message}, FullSimplify[foo[[1]] == foo[[2]]]] True ArcCot[4] + ArcTan[5/12] + ArcTan[8/(1 - Sqrt[-15 - 4*I])] + ArcTan[8/ (1 + Sqrt[-15 - 4*I])] + ArcTan[8/(1 - Sqrt[-15 + 4*I])] + ArcTan[8/(1 + Sqrt[-15 + 4*I])] == 2*Pi ArcTan[8/(1 - Sqrt[-15 - 4*I])] + ArcTan[8/(1 + Sqrt[-15 - 4*I])] + ArcTan[8/(1 - Sqrt[-15 + 4*I])] + ArcTan[8/(1 + Sqrt[-15 + 4*I])] == ArcTan[3] + ArcTan[5] + ArcTan[41/3] + ArcTan[21] In one of my attempts to show that foo[[1]]=foo[[3]] and foo[[1]]=foo[[2]] I try Block[{Message}, (FullSimplify[#1, ComplexityFunction -> LeafCount] & ) [foo[[1]] == foo[[3]]]] Block[{Message}, (FullSimplify[#1, ComplexityFunction -> LeafCount] & ) [foo[[1]] == foo[[2]]]] 2*Pi + ArcTan[8/(-1 + Sqrt[-15 - 4*I])] + ArcTan[8/(-1 + Sqrt[-15 + 4*I])] == ArcCot[4] + ArcTan[5/12] + ArcTan[8/(1 + Sqrt[-15 - 4*I])] + ArcTan[8/(1 + Sqrt[-15 + 4*I])] ArcTan[8/(1 + Sqrt[-15 - 4*I])] + ArcTan[8/(1 + Sqrt[-15 + 4*I])] == ArcTan[3] + ArcTan[5] + ArcTan[41/3] + ArcTan[21] + ArcTan[8/(-1 + Sqrt[-15 - 4*I])] + ArcTan[8/(-1 + Sqrt[-15 + 4*I])] but I failed. Introducing the following ComplexityFunction lst = Alternatives @@ Replace[ToExpression[Names["Arc*"]], x_ -> _x, -1] _ArcCos | _ArcCosh | _ArcCot | _ArcCoth | _ArcCsc | _ArcCsch | _ArcSec | _ArcSech | _ArcSin | _ArcSinh | _ArcTan | _ArcTanh I got TimeConstrained[Block[{Message}, (FullSimplify[#1, ComplexityFunction - > (Count[{#1}, lst, Infinity] & )] & )[ foo[[1]] == foo[[3]]]], 300] $Aborted TimeConstrained[Block[{Message}, (FullSimplify[#1, ComplexityFunction - > (Count[{#1}, lst, Infinity] & )] & )[ foo[[1]] == foo[[2]]]], 300] 0 == 4*Pi + 2*Log[(825/2873 - (2752*I)/2873)^(-(I/2))] + I*Log[-(((-1 - 8*I) + Sqrt[-15 - 4*I])/(1 - Sqrt[-15 - 4*I]))] - I*Log[-(((-1 + 8*I) + Sqrt[-15 - 4*I])/(1 - Sqrt[-15 - 4*I]))] - I*Log[((1 - 8*I) + Sqrt[-15 - 4*I])/(1 + Sqrt[-15 - 4*I])] + I*Log[((1 + 8*I) + Sqrt[-15 - 4*I])/(1 + Sqrt[-15 - 4*I])] + I*Log[- (((-1 - 8*I) + Sqrt[-15 + 4*I])/(1 - Sqrt[-15 + 4*I]))] - I*Log[-(((-1 + 8*I) + Sqrt[-15 + 4*I])/(1 - Sqrt[-15 + 4*I]))] - I*Log[((1 - 8*I) + Sqrt[-15 + 4*I])/(1 + Sqrt[-15 + 4*I])] + I*Log[((1 + 8*I) + Sqrt[-15 + 4*I])/(1 + Sqrt[-15 + 4*I])] Having failed also in similar attempts I would really appreciate any ideas! Dimitris
- Follow-Ups:
- Re: verification
- From: Andrzej Kozlowski <akoz@mimuw.edu.pl>
- Re: verification