Re: verification
- To: mathgroup at smc.vnet.net
- Subject: [mg74783] Re: verification
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Thu, 5 Apr 2007 04:08:43 -0400 (EDT)
- References: <eunpso$772$1@smc.vnet.net>
I deeply appreciate anyone's response. Thanks a lot. Dimitris =CF/=C7 dimitris =DD=E3=F1=E1=F8=E5: > Hello. > > > foo = {ArcTan[8/(1 - Sqrt[-15 - 4*I])] + ArcTan[8/(1 + Sqrt[-15 - > 4*I])] + ArcTan[8/(1 - Sqrt[-15 + 4*I])] + > ArcTan[8/(1 + Sqrt[-15 + 4*I])], ArcTan[3] + ArcTan[5] + > ArcTan[41/3] + ArcTan[21], 2*Pi - ArcTan[1/4] - ArcTan[5/12]}; > > The elements of foo list are equal > > Chop[N[foo, 30]] > {5.64341552435296080601310475496,5.64341552435296080601310475496,5.\ > 64341552435296080601310475496} > > Block[{Message}, FullSimplify[foo[[2]] == foo[[3]]]] > Block[{Message}, FullSimplify[foo[[1]] == foo[[3]]]] > Block[{Message}, FullSimplify[foo[[1]] == foo[[2]]]] > > True > ArcCot[4] + ArcTan[5/12] + ArcTan[8/(1 - Sqrt[-15 - 4*I])] + ArcTan[8/ > (1 + Sqrt[-15 - 4*I])] + ArcTan[8/(1 - Sqrt[-15 + 4*I])] + > ArcTan[8/(1 + Sqrt[-15 + 4*I])] == 2*Pi > ArcTan[8/(1 - Sqrt[-15 - 4*I])] + ArcTan[8/(1 + Sqrt[-15 - 4*I])] + > ArcTan[8/(1 - Sqrt[-15 + 4*I])] + > ArcTan[8/(1 + Sqrt[-15 + 4*I])] == ArcTan[3] + ArcTan[5] + > ArcTan[41/3] + ArcTan[21] > > In one of my attempts to show that foo[[1]]=foo[[3]] and > foo[[1]]=foo[[2]] I try > > Block[{Message}, (FullSimplify[#1, ComplexityFunction -> LeafCount] & ) > [foo[[1]] == foo[[3]]]] > Block[{Message}, (FullSimplify[#1, ComplexityFunction -> LeafCount] & ) > [foo[[1]] == foo[[2]]]] > > 2*Pi + ArcTan[8/(-1 + Sqrt[-15 - 4*I])] + ArcTan[8/(-1 + Sqrt[-15 + > 4*I])] == > ArcCot[4] + ArcTan[5/12] + ArcTan[8/(1 + Sqrt[-15 - 4*I])] + > ArcTan[8/(1 + Sqrt[-15 + 4*I])] > ArcTan[8/(1 + Sqrt[-15 - 4*I])] + ArcTan[8/(1 + Sqrt[-15 + 4*I])] == > ArcTan[3] + ArcTan[5] + ArcTan[41/3] + ArcTan[21] + ArcTan[8/(-1 + > Sqrt[-15 - 4*I])] + ArcTan[8/(-1 + Sqrt[-15 + 4*I])] > > but I failed. > > Introducing the following ComplexityFunction > > lst = Alternatives @@ Replace[ToExpression[Names["Arc*"]], x_ -> _x, > -1] > _ArcCos | _ArcCosh | _ArcCot | _ArcCoth | _ArcCsc | _ArcCsch | _ArcSec > | _ArcSech | _ArcSin | _ArcSinh | _ArcTan | _ArcTanh > > I got > > TimeConstrained[Block[{Message}, (FullSimplify[#1, ComplexityFunction - > > (Count[{#1}, lst, Infinity] & )] & )[ > foo[[1]] == foo[[3]]]], 300] > $Aborted > > TimeConstrained[Block[{Message}, (FullSimplify[#1, ComplexityFunction - > > (Count[{#1}, lst, Infinity] & )] & )[ > foo[[1]] == foo[[2]]]], 300] > 0 == 4*Pi + 2*Log[(825/2873 - (2752*I)/2873)^(-(I/2))] + I*Log[-(((-1 > - 8*I) + Sqrt[-15 - 4*I])/(1 - Sqrt[-15 - 4*I]))] - > I*Log[-(((-1 + 8*I) + Sqrt[-15 - 4*I])/(1 - Sqrt[-15 - 4*I]))] - > I*Log[((1 - 8*I) + Sqrt[-15 - 4*I])/(1 + Sqrt[-15 - 4*I])] + > I*Log[((1 + 8*I) + Sqrt[-15 - 4*I])/(1 + Sqrt[-15 - 4*I])] + I*Log[- > (((-1 - 8*I) + Sqrt[-15 + 4*I])/(1 - Sqrt[-15 + 4*I]))] - > I*Log[-(((-1 + 8*I) + Sqrt[-15 + 4*I])/(1 - Sqrt[-15 + 4*I]))] - > I*Log[((1 - 8*I) + Sqrt[-15 + 4*I])/(1 + Sqrt[-15 + 4*I])] + I*Log[((1 > + 8*I) + Sqrt[-15 + 4*I])/(1 + Sqrt[-15 + 4*I])] > > > Having failed also in similar attempts I would really appreciate any > ideas! > > Dimitris