Re: Finding unknown parameters using Mathematica
- To: mathgroup at smc.vnet.net
- Subject: [mg74784] Re: Finding unknown parameters using Mathematica
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Thu, 5 Apr 2007 04:09:13 -0400 (EDT)
- Organization: The Open University, Milton Keynes, UK
- References: <euvmhf$e3v$1@smc.vnet.net>
Shafiq Ahmad wrote: > Hi Danial, Andres Guzmanand and Group members, > > Thanks indeed for a good response from Danial and Andres. This is my > first experience to find such a cooperative group. > > I did try to solve these non-linear equations doing some modifications. > I put 2 parameters r1 and r2 equal to 1 and solved rest of the equations > for 3 parameters using FindRoot function (as mentioned by Andres). > > Below are the codes in the input form. Thanks for Danial to give me good > advice and now really easy for every one to understand codes in the > input formate. Next I'm trying to make these codes as generalized in the > following manner and strongly appreciate if any one can help me in this > regard. > > 1): I need to use a loop function for r1 and r2 values with an increment > of 0.1 and range for 0 to 1, it should come up with an array or list of > 10 values for b1, b2 and p. I did try it many ways, but mathematica > could not accept it. > > 2): After having values for all 5 parameters (r1,r2,b1,b2 and p), I need > to put all these values in the main equation " LMN" to get another list > or array for LMN values . Individually I used all parameter values, I > got LMN value but mathematica don't accept if I give all values in the > form of list or array and do it all one time. > > 3): After having LMN values, I would like plot a 3D plot or 3D contour > plot / surface plot with array / or list values for r1,r2 and LMN. > > Strongly appreciate if some one can share his/her thoughts. > > Regards > Shafiq > > =================================================== > > n = 4 > > x1 = {1, 2, 3, 4} > x2 = {1.7, 3.8, 4.9, 4.6} > > r1 = 1 > r2 = 1 > > LMN = n*Log[p] + n*Log[p + 1] + n*Log[b1] + n*Log[r1] + n*Log[b2] + > n*Log[r2] + > (b1 - 1)*Sum[Log[x1[[j]]], {j, 1, n}] + > (b2 - 1)*Sum[Log[x2[[j]]], {j, 1, n}] - > (p + 2)*Sum[Log[1 + r1*x1[[j]]^b1 + r2*x2[[j]]^b2], {j, 1, n}] > > Eqn1 = D[L, b1] == 0 > > Eqn2 = D[L, b2] == 0 > > Eqn3 = D[L, p] == 0 > > FindRoot[{Eqn1, Eqn2, Eqn3}, {b1, 10}, {b2, 10}, {p, 10}] > > ================================================ > Regards > Shafiq [snip] Please, find hereunder an example of what you could do to achieve what you want, assuming that I have correctly understood your request. (Note that the following code is not an example of good programming practice. Quick and dirty, but it works!) In[1]:= LMN[r1_, r2_, b1_, b2_, p_] := Module[{n = Length[x1]}, n*Log[p] + n*Log[p + 1] + n*Log[b1] + n*Log[r1] + n*Log[b2] + n*Log[r2] + (b1 - 1)*Sum[Log[x1[[j]]], {j, 1, n}] + (b2 - 1)*Sum[Log[x2[[j]]], {j, 1, n}] - (p + 2)*Sum[Log[1 + r1*x1[[j]]^b1 + r2*x2[[j]]^b2], {j, 1, n}]] In[2]:= x1 = {1, 2, 3, 4}; x2 = {1.7, 3.8, 4.9, 4.6}; In[4]:= sols = Table[Block[{r2, b1, b2, p, Eqn1, Eqn2, Eqn3}, r2 = r1; Eqn1 = D[LMN[r1, r2, b1, b2, p], b1] == 0; Eqn2 = D[LMN[r1, r2, b1, b2, p], b2] == 0; Eqn3 = D[LMN[r1, r2, b1, b2, p], p] == 0; Join[{a -> r1, b -> r2}, FindRoot[ {Eqn1, Eqn2, Eqn3}, {b1, 10}, {b2, 10}, {p, 10}]]], {r1, 0.1, 1, 0.1}] /. a -> r1 /. b -> r2 Out[4]= {{r1 -> 0.1, r2 -> 0.1, b1 -> 5.341935448717984, b2 -> 3.9436875174176804, p -> 0.3721885234758986}, {r1 -> 0.2, r2 -> 0.2, b1 -> 5.534042581697728, b2 -> 4.045832415596042, p -> 0.2940686067033152}, {r1 -> 0.30000000000000004, r2 -> 0.30000000000000004, b1 -> 5.626397092321994, b2 -> 4.095035940496871, p -> 0.26139996011190647}, {r1 -> 0.4, r2 -> 0.4, b1 -> 5.697719904063341, b2 -> 4.136114771126181, p -> 0.24147559059244234}, {r1 -> 0.5, r2 -> 0.5, b1 -> 5.7580442518190855, b2 -> 4.172731896134758, p -> 0.22753002319002713}, {r1 -> 0.6000000000000001, r2 -> 0.6000000000000001, b1 -> 5.810601737463024, b2 -> 4.20572325658841, p -> 0.2170152505036831}, {r1 -> 0.7000000000000001, r2 -> 0.7000000000000001, b1 -> 5.8571172402134515, b2 -> 4.235590112750038, p -> 0.20870033683174416}, {r1 -> 0.8, r2 -> 0.8, b1 -> 5.898742384194647, b2 -> 4.262751009402106, p -> 0.20190091294950313}, {r1 -> 0.9, r2 -> 0.9, b1 -> 5.9363209375865305, b2 -> 4.287567369366186, p -> 0.19619991348677382}, {r1 -> 1., r2 -> 1., b1 -> 5.970499008585786, b2 -> 4.310347981142145, p -> 0.1913259981578475}} In[5]:= pts = LMN[r1, r2, b1, b2, p] /. sols Out[5]= {-12.86601076530539, -13.020764326190708, -13.17718328097974, -13.311047643795543, -13.424702323411111, -13.522321810909304, -13.607333751744086, -13.682314918879541, -13.749187133239175, -13.809399854995021} In[6]:= sols = Table[Block[{b1, b2, p, Eqn1, Eqn2, Eqn3}, Eqn1 = D[LMN[r1, r2, b1, b2, p], b1] == 0; Eqn2 = D[LMN[r1, r2, b1, b2, p], b2] == 0; Eqn3 = D[LMN[r1, r2, b1, b2, p], p] == 0; Join[{a -> r1, b -> r2}, FindRoot[ {Eqn1, Eqn2, Eqn3}, {b1, 10}, {b2, 10}, {p, 10}]]], {r1, 0.1, 1, 0.1}, {r2, 0.1, 1, 0.1}] /. a -> r1 /. b -> r2; pts = LMN[r1, r2, b1, b2, p] /. sols; ListContourPlot[pts]; [...graphic deleted...] Hope this helps, Jean-Marc