Re: Enquirey
- To: mathgroup at smc.vnet.net
- Subject: [mg74830] Re: Enquirey
- From: "Jean-Marc Gulliet" <jeanmarc.gulliet at gmail.com>
- Date: Sat, 7 Apr 2007 04:02:13 -0400 (EDT)
- References: <ev2anc$k85$1@smc.vnet.net> <4614EDF3.90308@gmail.com>
On 4/6/07, Rita Ray <rayrita1 at gmail.com> wrote: > Hi Jean, > > Thank you for your response. I've tried the way you wrote me to solve the > equation but Mathematica is showing this "Reduce::naqs: eqn1 && eqn2 is not > a quantified system of equations and inequalities." I really don't > understand what does it mean. It would be great help if you could tell me is > there any way I could proceed. > > Thank you. > > Rita Have you tried (cut and paste) the code I attached to my previous reply? It contains syntactically correct Mathematica expressions. Anyway, as some others and I pointed out, neither Solve nor Reduce are able to solve this kind of transcendental equation. You should try a numerical approach, which implies to give some numeric values to some or all of your parameters (a, w, z ?). Consult the documentation for NSolve and the likes. See some examples below. In[1] = eqn1= ( -a)* Exp[ 2*w]- a^2* Exp[ w+ ( x-y)*z]+ a^2* Exp[ w- ( x-y)*z]- a* Exp[ w+ ( x-y)*z]- a* Exp[ w- ( x-y)*z]+ a^2* Exp[ 2* ( x-y)]+a- a^2+ a^2*x* Exp[ w+ ( x-y)*z]+ a^2*x* Exp[ w- ( x-y)*z]- a*x* Exp[ w+ ( x-y)*z]- a*x* Exp[ w- ( x-y)*z]+ 2*a*x- 2* a^2*x- ( a^3*w* Exp[ w+ ( x-y)*z])/z- ( a^3*w* Exp[ w- ( x-y)*z])/z+ ( a^2*w* Exp[ w+ ( x-y)*z])/z+ ( a^2*w* Exp[ w- ( x-y)*z])/z- ( 2* a^2*w)/z+ ( 2* a^3*w)/z==0; eqn2= - ( ( a* Exp[ -w+ ( x-y)*z]*z* ( - ( ( 1-a)*w)- 2*w* a^2+ 2*w* a^3+ a^2*w* Exp[ w- ( x-y)*z]- a^3*w* Exp[ w- ( x-y)*z]+ a^2*w* Exp[ w+ ( x-y)*z]- a^3*w* Exp[ w+ ( x-y)*z]+ a*z- a^2*z+ a*z* Exp[ 2*w]+ a^2*z* Exp[ 2* ( x-y)]- a*z* Exp[ w- ( x-y)*z]+ a^2*z* Exp[ w- ( x-y)*z]- a*z* Exp[ w+ ( x-y)*z]- a^2*z* Exp[ w+ ( x-y)*z]+ 2*a*x*z- 2* a^2*x*z- a*x*z* Exp[ w- ( x-y)*z]+ a^2*x*z* Exp[ w- ( x-y)*z]- a*x*z* Exp[ w+ ( x-y)*z]+ a^2*x*z* Exp[ w+ ( x-y)*z]))/ ( a* Exp[ -w+ ( x-y)*z]+ ( 1-a)* Exp[ -w- ( x-y)*z]))- ( a* Exp[ -w+ ( x-y)*z]* ( ( 1-a)*z* Exp[ -w- ( x-y)*z]- a*z* Exp[ -w+ ( x-y)*z])* ( - ( ( 1-a)*w)- 2*w* a^2+ 2*w* a^3+ a^2*w* Exp[ w- ( x-y)*z]- a^3*w* Exp[ w- ( x-y)*z]+ a^2*w* Exp[ w+ ( x-y)*z]- a^3*w* Exp[ w+ ( x-y)*z]+ a*z- a^2*z+ a*z* Exp[ 2*w]+ a^2*z* Exp[ 2* ( x-y)]- a*z* Exp[ w- ( x-y)*z]+ a^2*z* Exp[ w- ( x-y)*z]- a*z* Exp[ w+ ( x-y)*z]- a^2*z* Exp[ w+ ( x-y)*z]+ 2*a*x*z- 2* a^2*x*z- a*x*z* Exp[ w- ( x-y)*z]+ a^2*x*z* Exp[ w- ( x-y)*z]- a*x*z* Exp[ w+ ( x-y)*z]+ a^2*x*z* Exp[ w+ ( x-y)*z]))/ ( a* Exp[ -w+ ( x-y)*z]+ ( 1-a)* Exp[ -w- ( x-y)*z])^2+ ( a* Exp[ -w+ ( x-y)*z]* ( -2* a^2*z* Exp[ 2* ( x-y)]+ a^2*w*z* Exp[ w- ( x-y)*z]- a^3*w*z* Exp[ w- ( x-y)*z]- a^2*w*z* Exp[ w+ ( x-y)*z]+ a^3*w*z* Exp[ w+ ( x-y)*z]- a* z^2* Exp[ w- ( x-y)*z]+ a^2* z^2* Exp[ w- ( x-y)*z]+ a* z^2* Exp[ w+ ( x-y)*z]+ a^2* z^2* Exp[ w+ ( x-y)*z]- a*x* z^2* Exp[ w- ( x-y)*z]+ a^2*x* z^2* Exp[ w- ( x-y)*z]+ a*x* z^2* Exp[ w+ ( x-y)*z]- a^2*x* z^2* Exp[ w+ ( x-y)*z]))/ ( a* Exp[ -w+ ( x-y)*z]+ ( 1-a)* Exp[ -w- ( x-y)*z])==0; Reduce[ { eqn1,eqn2}, { x,y}] Reduce::"nsmet" : "This system cannot be solved with the methods available to Reduce. (ButtonBox[\"More\[Ellipsis]\", Rule[ButtonStyle, \"RefGuideLinkText\"], Rule[ButtonFrame, None], RuleDelayed[ButtonData, \"Reduce::nsmet\"]])" Out[3] = Reduce[{a - a^2 - a*E^(2*w) + a^2*E^(2*(x - y)) - a*E^(w - (x - y)*z) + a^2*E^(w - (x - y)*z) - a*E^(w + (x - y)*z) - a^2*E^(w + (x - y)*z) + 2*a*x - 2*a^2*x - a*E^(w - (x - y)*z)*x + a^2*E^(w - (x - y)*z)*x - a*E^(w + (x - y)*z)*x + a^2*E^(w + (x - y)*z)*x - (2*a^2*w)/z + (2*a^3*w)/z + a^2*E^(w - (x - y)*z)*(w/z) - a^3*E^(w - (x - y)*z)*(w/z) + a^2*E^(w + (x - y)*z)*(w/z) - a^3*E^(w + (x - y)*z)*(w/z) == 0, -((a*E^(-w + (x - y)*z)*z*((-(1 - a))*w - 2*a^2*w + 2*a^3*w + a^2*E^(w - (x - y)*z)*w - a^3*E^(w - (x - y)*z)*w + a^2*E^(w + (x - y)*z)*w - a^3*E^(w + (x - y)*z)*w + a*z - a^2*z + a*E^(2*w)*z + a^2*E^(2*(x - y))*z - a*E^(w - (x - y)*z)*z + a^2*E^(w - (x - y)*z)*z - a*E^(w + (x - y)*z)*z - a^2*E^(w + (x - y)*z)*z + 2*a*x*z - 2*a^2*(x*z) - a*E^(w - (x - y)*z)*(x*z) + a^2*E^(w - (x - y)*z)*x*z - a*E^(w + (x - y)*z)*(x*z) + a^2*E^(w + (x - y)*z)*x*z))/((1 - a)*E^(-w - (x - y)*z) + a*E^(-w + (x - y)*z))) - (a*E^(-w + (x - y)*z)*((1 - a)*E^(-w - (x - y)*z)*z - a*E^(-w + (x - y)*z)*z)*((-(1 - a))*w - 2*a^2*w + 2*a^3*w + a^2*E^(w - (x - y)*z)*w - a^3*E^(w - (x - y)*z)*w + a^2*E^(w + (x - y)*z)*w - a^3*E^(w + (x - y)*z)*w + a*z - a^2*z + a*E^(2*w)*z + a^2*E^(2*(x - y))*z - a*E^(w - (x - y)*z)*z + a^2*E^(w - (x - y)*z)*z - a*E^(w + (x - y)*z)*z - a^2*E^(w + (x - y)*z)*z + 2*a*x*z - 2*a^2*(x*z) - a*E^(w - (x - y)*z)*(x*z) + a^2*E^(w - (x - y)*z)*x*z - a*E^(w + (x - y)*z)*(x*z) + a^2*E^(w + (x - y)*z)*x*z))/((1 - a)*E^(-w - (x - y)*z) + a*E^(-w + (x - y)*z))^2 + (a*E^(-w + (x - y)*z)*(-2*a^2*E^(2*(x - y))*z + a^2*E^(w - (x - y)*z)*w*z - a^3*E^(w - (x - y)*z)*w*z - a^2*E^(w + (x - y)*z)*w*z + a^3*E^(w + (x - y)*z)*w*z - a*E^(w - (x - y)*z)*z^2 + a^2*E^(w - (x - y)*z)*z^2 + a*E^(w + (x - y)*z)*z^2 + a^2*E^(w + (x - y)*z)*z^2 - a*E^(w - (x - y)*z)*x*z^2 + a^2*E^(w - (x - y)*z)*x*z^2 + a*E^(w + (x - y)*z)*x*z^2 - a^2*E^(w + (x - y)*z)*x*z^2))/((1 - a)*E^(-w - (x - y)*z) + a*E^(-w + (x - y)*z)) == 0}, {x, y}] In[4] = NSolve[{eqn1, eqn2} /. a -> 1, {x, y}] Solve::"ifun" : "Inverse functions are being used by (Solve), so some solutions may not be found; use Reduce for complete solution information. (ButtonBox[\"More\[Ellipsis]\", Rule[ButtonStyle, \"RefGuideLinkText\"], Rule[ButtonFrame, None], RuleDelayed[ButtonData, \"Solve::ifun\"]])" Solve::"svars" : "Equations may not give solutions for all \"solve\" variables. (ButtonBox[\"More\[Ellipsis]\", Rule[ButtonStyle, \"RefGuideLinkText\"], Rule[ButtonFrame, None], RuleDelayed[ButtonData, \"Solve::svars\"]])" Out[4] = {{y -> Log[-((1.*E^(-1.*w + x)*Sqrt[-2. + z])/Sqrt[z])]}, {y -> Log[E^(-1.*w + x)*(Sqrt[-2. + z]/Sqrt[z])]}} In[5] = NSolve[{eqn1, eqn2} /. a -> 1 /. z -> 1, {x, y}] Solve::"ifun" : "Inverse functions are being used by (Solve), so some solutions may not be found; use Reduce for complete solution information. (ButtonBox[\"More\[Ellipsis]\", Rule[ButtonStyle, \"RefGuideLinkText\"], Rule[ButtonFrame, None], RuleDelayed[ButtonData, \"Solve::ifun\"]])" Solve::"svars" : "Equations may not give solutions for all \"solve\" variables. (ButtonBox[\"More\[Ellipsis]\", Rule[ButtonStyle, \"RefGuideLinkText\"], Rule[ButtonFrame, None], RuleDelayed[ButtonData, \"Solve::svars\"]])" Out[5] = {{y -> -1.*Log[E^w] + Log[E^x]}} Regards, Jean-Marc > On 4/5/07, Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com> wrote: > > Rita Ray wrote: > > > I am trying to solve two equation with two unknowns. I am using > > > Mathematica 5.2. Below is my program > > > > > > > > > > Solve[{a*Exp[2*w]-a^2*Exp[w+(x-y)*z]+a^2*Exp[w-(x-y)*z]-a*Exp[w+(x-y)*z]-a*= > > > > Exp[w-(x-y)*z]+a^2*Exp[2*(x-y)]+a-a^2+a^2*x*Exp[w+(x-y)*z] > > > > +a^2*x*Exp[w-(x-y)*z]-a*x*Exp[w+(x-y)*z]-a*x*Exp[w-(x-y)*z]+2*a*x-2*a^2*x-(= > > > > (a^3*w*Exp[w+(x-y)*z])/z)-((a^3*w*Exp[w-(x-y)*z])/z)+((a^2*w*Exp[w+(x-y)*z]= > > > > )/z)+((a^2*w*Exp[w-(x-y)*z])/z)-((2*a^2*w)/z)+((2*a^3*w)/z)====0,-((a*Exp[-= > > > > w+(x-y)*z]*z*(-((1-a)*w)-2*w*a^2+2*w*a^3+a^2*w*Exp[w-(x-y)*z]-a^3*w*Exp[w-(= > > > > x-y)*z]+a^2*w*Exp[w+(x-y)*z]-a^3*w*Exp[w+(x-y)*z]+a*z-a^2*z+a*z*Exp[2*w]+a^= > > > > 2*z*Exp[2*(x-y)]-a*z*Exp[w-(x-y)*z]+a^2*z*Exp[w-(x-y)*z]-a*z*Exp[w+(x-y)*z]= > > > > -a^2*z*Exp[w+(x-y)*z]+2*a*x*z-2*a^2*x*z-a*x*z*Exp[w-(x-y)*z]+a^2*x*z*Exp[w-= > > > > (x-y)*z]-a*x*z*Exp[w+(x-y)*z]+a^2*x*z*Exp[w+(x-y)*z]))/(a*Exp[-w+(x-y)*z]+(= > > > > 1-a)*Exp[-w-(x-y)*z]))-(a*Exp[-w+(x-y)*z]*((1-a)*z*Exp[-w-(x-y)*z]-a*z*Exp[= > > > > -w+(x-y)*z])*(-((1-a)*w)-2*w*a^2+2*w*a^3+a^2*w*Exp[w-(x-y)*z]-a^3*w*Exp[w-(= > > > > x-y)*z]+a^2*w*Exp[w+(x-y)*z]-a^3*w*Exp[w+(x-y)*z]+a*z-a^2*z+a*z*Exp[2*w]+a^= > > > > 2*z*Exp[2*(x-y)]-a*z*Exp[w-(x-y)*z]+a^2*z*Exp[w-(x-y)*z]-a*z*Exp[w+(x-y)*z]= > > > > -a^2*z*Exp[w+(x-y)*z]+2*a*x*z-2*a^2*x*z-a*x*z*Exp[w-(x-y)*z]+a^2*x*z*Exp[w-= > > > > (x-y)*z]-a*x*z*Exp[w+(x-y)*z]+a^2*x*z*Exp[w+(x-y)*z]))/(a*Exp[-w+(x-y)*z]+(= > > > > 1-a)*Exp[-w-(x-y)*z])^2+(a*Exp[-w+(x-y)*z]*(-2*a^2*z*Exp[2*(x-y)]+a^2*w*z*E= > > > > xp[w-(x-y)*z]-a^3*w*z*Exp[w-(x-y)*z]-a^2*w*z*Exp[w+(x-y)*z]+a^3*w*z*Exp[w+(= > > > > x-y)*z]-a*z^2*Exp[w-(x-y)*z]+a^2*z^2*Exp[w-(x-y)*z]+a*z^2*Exp[w+(x-y)*z]+a^= > > > > 2*z^2*Exp[w+(x-y)*z]-a*x*z^2*Exp[w-(x-y)*z]+a^2*x*z^2*Exp[w-(x-y)*z] > > > > +a*x*z^2*Exp[w+(x-y)*z]-a^2*x*z^2*Exp[w+(x-y)*z]))/(a*Exp[-w+(x-y)*z]+(1-a)= > > > *Exp[-w-(x-y)*z])====0},{x,y}] > > > > > > > > > Thank you. > > > > > > Rita Ray. > > > > > > Ph.D. student > > > > > > > Four equal signs in a row (i.e. ====) does not mean anything in > > Mathematica. To set up an equation, what you want to use is two equal > > signs in a row (i.e. ==). > > > > Since "Solve deals primarily with linear and polynomial equations > > (Online Help)," and Reduce returns the expression unevaluated with the > > message, "Reduce::nsmet: This system cannot be solved with the methods > > available to Reduce, you might want to try a different approach, like a > > numerical solution with NSolve. > > > > eqn1 = (-a)*Exp[2*w] - a^2*Exp[w + (x - y)*z] + > > a^2*Exp[w - (x - y)*z] - a*Exp[w + (x - y)*z] - > > a*Exp[w - (x - y)*z] + a^2*Exp[2*(x - y)] + a - > > a^2 + a^2*x*Exp[w + (x - y)*z] + > > a^2*x*Exp[w - (x - y)*z] - > > a*x*Exp[w + (x - y)*z] - a*x*Exp[w - (x - y)*z] + > > 2*a*x - 2*a^2*x - (a^3*w*Exp[w + (x - y)*z])/z - > > (a^3*w*Exp[w - (x - y)*z])/z + > > (a^2*w*Exp[w + (x - y)*z])/z + > > (a^2*w*Exp[w - (x - y)*z])/z - (2*a^2*w)/z + > > (2*a^3*w)/z == 0; > > > > eqn2 = -((a*Exp[-w + (x - y)*z]*z*(-((1 - a)*w) - > > 2*w*a^2 + 2*w*a^3 + a^2*w* > > Exp[w - (x - y)*z] - a^3*w* > > Exp[w - (x - y)*z] + a^2*w* > > Exp[w + (x - y)*z] - a^3*w* > > Exp[w + (x - y)*z] + a*z - a^2*z + > > a*z*Exp[2*w] + a^2*z*Exp[2*(x - y)] - > > a*z*Exp[w - (x - y)*z] + > > a^2*z*Exp[w - (x - y)*z] - > > a*z*Exp[w + (x - y)*z] - > > a^2*z*Exp[w + (x - y)*z] + 2*a*x*z - > > 2*a^2*x*z - a*x*z*Exp[w - (x - y)*z] + > > a^2*x*z*Exp[w - (x - y)*z] - > > a*x*z*Exp[w + (x - y)*z] + a^2*x*z* > > Exp[w + (x - y)*z]))/ > > (a*Exp[-w + (x - y)*z] + (1 - a)* > > Exp[-w - (x - y)*z])) - > > (a*Exp[-w + (x - y)*z]* > > ((1 - a)*z*Exp[-w - (x - y)*z] - > > a*z*Exp[-w + (x - y)*z])*(-((1 - a)*w) - > > 2*w*a^2 + 2*w*a^3 + a^2*w*Exp[w - (x - y)*z] - > > a^3*w*Exp[w - (x - y)*z] + > > a^2*w*Exp[w + (x - y)*z] - > > a^3*w*Exp[w + (x - y)*z] + a*z - a^2*z + > > a*z*Exp[2*w] + a^2*z*Exp[2*(x - y)] - > > a*z*Exp[w - (x - y)*z] + > > a^2*z*Exp[w - (x - y)*z] - > > a*z*Exp[w + (x - y)*z] - > > a^2*z*Exp[w + (x - y)*z] + 2*a*x*z - > > 2*a^2*x*z - a*x*z*Exp[w - (x - y)*z] + > > a^2*x*z*Exp[w - (x - y)*z] - > > a*x*z*Exp[w + (x - y)*z] + > > a^2*x*z*Exp[w + (x - y)*z]))/ > > (a*Exp[-w + (x - y)*z] + (1 - a)* > > Exp[-w - (x - y)*z])^2 + > > (a*Exp[-w + (x - y)*z]*(-2*a^2*z*Exp[2*(x - y)] + > > a^2*w*z*Exp[w - (x - y)*z] - > > a^3*w*z*Exp[w - (x - y)*z] - > > a^2*w*z*Exp[w + (x - y)*z] + > > a^3*w*z*Exp[w + (x - y)*z] - > > a*z^2*Exp[w - (x - y)*z] + > > a^2*z^2*Exp[w - (x - y)*z] + > > a*z^2*Exp[w + (x - y)*z] + > > a^2*z^2*Exp[w + (x - y)*z] - > > a*x*z^2*Exp[w - (x - y)*z] + a^2*x*z^2* > > Exp[w - (x - y)*z] + a*x*z^2* > > Exp[w + (x - y)*z] - a^2*x*z^2* > > Exp[w + (x - y)*z]))/(a*Exp[-w + (x - y)*z] + > > (1 - a)*Exp[-w - (x - y)*z]) == 0; > > > > Reduce[{eqn1, eqn2}, {x, y}] > > > > Regards, > > Jean-Marc > > > >