some questions (unecessary-?-complicated results by Integrate)
- To: mathgroup at smc.vnet.net
- Subject: [mg74847] some questions (unecessary-?-complicated results by Integrate)
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Sun, 8 Apr 2007 05:03:45 -0400 (EDT)
Hello to all. I have a pair of queries. Any help will be greatly appreciate. Consider the integral In[2]:= f = HoldForm[Integrate[1/(x^4 + 2*a*x^2 + 1)^2, {x, 0, Infinity}]] >From the following I think that the integral converges for a>-1. In[7]:= 1/(x^4 + 2*a*x^2 + 1)^2 + O[x, 0]^6 1/(x^4 + 2*a*x^2 + 1)^2 + O[x, Infinity]^16 ToRadicals[Reduce[(x^4 + 2*a*x^2 + 1)^2 == 0 && x >= 0 && a > -1, x, Reals]] ToRadicals[Reduce[(x^4 + 2*a*x^2 + 1)^2 == 0 && x >= 0 && a <= -1, x, Reals]] Out[7]= SeriesData[x, 0, {1, 0, -4*a, 0, -2 + 12*a^2}, 0, 6, 1] Out[8]= SeriesData[x, Infinity, {1, 0, -4*a, 0, (-8 + 48*a^2)/4, 0, (40*a - 4*a*(-8 + 48*a^2))/6}, 8, 16, 1] Out[9]= False Out[10]= (a < -1 && (x == Sqrt[-a + Sqrt[-1 + a^2]] || x == -Sqrt[-a + Sqrt[-1 + a^2]])) || (a == -1 && x == 1) Mathematica however does not see able to understand it. And moreover it returns an unecessary complicated symbolic result if we add the assumption a>-1. In[12]:= ReleaseHold[f /. Integrate[x___] :> Integrate[x, Assumptions -> a > -1]] Out[12]= If[Im[Sqrt[-a - Sqrt[-1 + a^2]]] > 0 && Im[Sqrt[-a + Sqrt[-1 + a^2]]] > 0, (I*(-3*Sqrt[-a - Sqrt[-1 + a^2]] + 3*Sqrt[-a + Sqrt[-1 + a^2]] + a^2*(Sqrt[-a - Sqrt[-1 + a^2]] - Sqrt[-a + Sqrt[-1 + a^2]]) + a*Sqrt[-1 + a^2]*(Sqrt[-a - Sqrt[-1 + a^2]] + Sqrt[-a + Sqrt[-1 + a^2]]))*Pi)/ (16*(-1 + a^2)^(3/2)*Sqrt[-a - Sqrt[-1 + a^2]]*Sqrt[-a + Sqrt[-1 + a^2]]), Integrate[1/(1 + 2*a*x^2 + x^4)^2, {x, 0, Infinity}, Assumptions -> a > -1 && (Im[Sqrt[-a - Sqrt[-1 + a^2]]] <= 0 || Im[Sqrt[-a + Sqrt[-1 + a^2]]] <= 0)]] However the integral is simply In[13]:= mine = ((2*a + 3)/(2^(7/2)*(a + 1)^(3/2)))*Pi; Indeed In[14]:= ReleaseHold[(f /. a -> #1 & ) /@ Range[-4/5, 2, 1/5]] Out[14]= {(7/8)*Sqrt[5/2]*Pi, (9*Sqrt[5]*Pi)/32, (11/24)*Sqrt[5/6]*Pi, (13/64)*Sqrt[5/2]*Pi, (3*Pi)/(8*Sqrt[2]), (17/96)*Sqrt[5/3]*Pi, (19/56)*Sqrt[5/14]*Pi, (21*Sqrt[5]*Pi)/256, (23/216)*Sqrt[5/2]*Pi, (5*Pi)/32, (27/88)*Sqrt[5/22]*Pi, (29/192)*Sqrt[5/6]*Pi, (31/104)*Sqrt[5/26]*Pi, (33/224)*Sqrt[5/7]*Pi, (7*Pi)/(24*Sqrt[6])} In[15]:= (mine /. a -> #1 & ) /@ Range[-4/5, 2, 1/5] Out[15]= {(7/8)*Sqrt[5/2]*Pi, (9*Sqrt[5]*Pi)/32, (11/24)*Sqrt[5/6]*Pi, (13/64)*Sqrt[5/2]*Pi, (3*Pi)/(8*Sqrt[2]), (17/96)*Sqrt[5/3]*Pi, (19/56)*Sqrt[5/14]*Pi, (21*Sqrt[5]*Pi)/256, (23/216)*Sqrt[5/2]*Pi, (5*Pi)/32, (27/88)*Sqrt[5/22]*Pi, (29/192)*Sqrt[5/6]*Pi, (31/104)*Sqrt[5/26]*Pi, (33/224)*Sqrt[5/7]*Pi, (7*Pi)/(24*Sqrt[6])} Of course Mathematica's symbolic result math is correct. Let set the GenerateConditions to False. In this way we get a simpler result than previously obtained. In[17]:= math = ReleaseHold[f /. Integrate[x___] :> Integrate[x, GenerateConditions -> False]] Out[17]= ((Sqrt[1/(a + Sqrt[-1 + a^2])]*(3 + a*(-a + Sqrt[-1 + a^2])) + Sqrt[a + Sqrt[-1 + a^2]]*(-3 + a*(a + Sqrt[-1 + a^2])))*Pi)/(16*(-1 + a^2)^(3/2)) In[18]:= FullSimplify[Block[{Message}, (math /. a -> #1 & ) /@ Range[-4/5, 2, 1/5]]] Out[18]= {(7/8)*Sqrt[5/2]*Pi, (9*Sqrt[5]*Pi)/32, (11/24)*Sqrt[5/6]*Pi, (13/64)*Sqrt[5/2]*Pi, (3*Pi)/(8*Sqrt[2]), (17/96)*Sqrt[5/3]*Pi, (19/56)*Sqrt[5/14]*Pi, (21*Sqrt[5]*Pi)/256, (23/216)*Sqrt[5/2]*Pi, Indeterminate, (27/88)*Sqrt[5/22]*Pi, (29/192)*Sqrt[5/6]*Pi, (31/104)*Sqrt[5/26]*Pi, (33/224)*Sqrt[5/7]*Pi, (7*Pi)/(24*Sqrt[6])} For the value a=1 special care is needed for the symbolic result math. (Note that my formula does not need special care for a=1. Indeed this feuture is due to the complcated structure of Mathematica's result). In[20]:= Limit[math, a -> 1] Out[20]= (5*Pi)/32 The question still remains! What is the reason of the complicated structure of Mathematica's analytic result? And here comes my second question. For a>-1 Mathematica's complicated result and mine simpler one are equal. Plot[Chop[math - mine], {a, -0.99, 3}, Axes -> False, Frame -> True] However I was able to show this only by the following code In[26]:= math == mine; (#1^2 & ) /@ %; FullSimplify[(Expand[#1] & ) /@ %]; PowerExpand[%] Out[29]= True Why can't Mathematica simplify math-mine to zero with just specifying a>-1? (I have already tried it but I failed!). For everyone wonder about mine result, try In[33]:= (1*Dt[x])/(x^4 + 2*a*x^2 + 1)^2 /. x -> Sqrt[y] /. Dt[y] -> 1 Integrate[%, {y, 0, Infinity}] Out[33]= 1/(2*Sqrt[y]*(1 + 2*a*y + y^2)^2) Out[34]= (1/2)*If[a > 0, ((3 + 2*a)*Pi)/(4*Sqrt[2]*(1 + a)^(3/2)), Integrate[1/ (Sqrt[y]*(1 + 2*a*y + y^2)^2), {y, 0, Infinity}, Assumptions -> a <= 0]] But not that even now, Mathematica can't see that the integral converges for a>-1 and it erroneoussly returns the convergence region a>0. E.g. In[37]:= (1*Dt[x])/(x^4 + 2*(-6/7)*x^2 + 1)^2 /. x -> Sqrt[y] /. Dt[y] -> 1 Integrate[%, {y, 0, Infinity}] Out[37]= 1/(2*Sqrt[y]*(1 - (12*y)/7 + y^2)^2) Out[38]= (9/8)*Sqrt[7/2]*Pi Dimitris